Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2019 lúc 11:52

Giải bài 7 trang 176 sgk Đại Số 11 | Để học tốt Toán 11 

Giải bài 7 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Sách Giáo Khoa
Xem chi tiết
Đặng Phương Nam
4 tháng 4 2017 lúc 16:54

a) Ta có:

y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2

Suy ra phương trình tiếp tuyến cần tìm là:

y – 3 = -2(x – 2) ⇔ y = -2x + 7

b) Ta có: y’ = f’(x) = 3x2 + 8x ⇒ f’(-1) = 3 – 8 = -5

Mặt khác: x0 = -1 ⇒ y0 = -1 + 4 – 1 = 2

Vậy phương trình tiếp tuyến cần tìm là:

y – 2 = -5 (x + 1) ⇔ y = -5x – 3

c) Ta có:

y0 = 1 ⇒ 1 = x2 – 4x + 4 ⇒ x02 – 4x0 + 3 = 0 ⇒ x0 = 1 hoặc x0 = 3

f’(x) = 2x – 4 ⇒ f’(1) = -2 và f’(3) = 2

Vậy có hai tiếp tuyến cần tìm có phương trình là:

y – 1 = -2 (x – 1) ⇔ y = -2x + 3

y – 1 = 2 (x – 3) ⇔ y = 2x – 5



Lưu Gia Huy
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 3 2021 lúc 16:19

\(y=\dfrac{2x+2}{x-1}\Rightarrow y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(y'\left(2\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-2\right)+4\Leftrightarrow y=-4x+12\)

b. Pt hoành độ giao điểm:

\(\dfrac{2x+2}{x-1}=2x-1\Leftrightarrow2x^2-5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{33}}{4}\\x=\dfrac{5+\sqrt{33}}{4}\end{matrix}\right.\)

\(y'\left(\dfrac{5-\sqrt{33}}{4}\right)=-\dfrac{17+\sqrt{33}}{8}\) ; \(y'\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{-17+\sqrt{33}}{8}\)

\(y\left(\dfrac{5-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\) ; \(y\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{3+\sqrt{33}}{2}\)

Có 2 tiếp tuyến thỏa mãn: 

\(\left[{}\begin{matrix}y=\dfrac{-17-\sqrt{33}}{8}\left(x-\dfrac{5-\sqrt{33}}{4}\right)+\dfrac{3-\sqrt{33}}{2}\\y=\dfrac{-17+\sqrt{33}}{8}\left(x-\dfrac{5+\sqrt{33}}{4}\right)+\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)

Đề bài cho số liệu thật kì quặc

Tạ Tương Thái Tài
Xem chi tiết
Bùi Quỳnh Hương
29 tháng 4 2016 lúc 10:44

a. Ta có : \(y'=3x^2-6x+2\)

\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)

Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)

 

b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :

\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)

Vậy phương trình tiếp tuyến là :

 \(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)

 

c. PTHD giao điểm của (C) với Ox :

\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)

\(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)

\(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)

\(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)

09 Lê Quang HIếu
Xem chi tiết

a: \(y=-x^2+3x-2\)

=>\(y'=-\left(2x\right)+3\cdot1\)

=>y'=-2x+3

=>\(f'\left(x_0\right)=-2\cdot x_0+3\)

b: \(f'\left(2\right)=-2\cdot2+3=-4+3=-1\)

\(f\left(2\right)=-2^2+3\cdot2-2=0\)

Phương trình tiếp tuyến của (P) tại điểm có hoành độ x=2 là:

\(y-f\left(2\right)=f'\left(2\right)\left(x-2\right)\)

=>\(y-0=-1\left(x-2\right)=-x+2\)

=>y=-x+2

c: Đặt y=0

=>\(-x^2+3x-2=0\)

=>\(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

TH1: x=2

\(f'\left(2\right)=-2\cdot2+3=-1;f\left(2\right)=-2^2+3\cdot2-2=0\)

Phương trình tiếp tuyến tại điểm có hoành độ x=2 là:

y-f(2)=f'(2)(x-2)

=>y-0=-1(x-2)

=>y=-x+2

TH2: x=1

\(f'\left(1\right)=-2\cdot1+3=1\)

f(1)=0

Phương trình tiếp tuyến tại điểm có hoành độ x=1 là:

y-f(1)=f'(1)(x-1)

=>y-0=1(x-1)

=>y=x-1

d: Gọi phương trình tiếp tuyến cần tìm là (d): y=ax+b(a<>0)

Vì (d) vuông góc với y=x+3 nên a*1=-1

=>a=-1

=>y=-x+b

=>f'(x)=-1

=>-2x+3=-1

=>-2x=-4

=>x=2

f(2)=-2^2+3*2-2=0

f'(2)=-1

Phương trình tiếp tuyến là:

y-f(2)=f'(2)(x-2)

=>y-0=-1(x-2)

=>y=-x+2

Nguyễn Linh Chi
Xem chi tiết
Hồng Phúc
4 tháng 4 2021 lúc 0:36

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

Hồng Phúc
4 tháng 4 2021 lúc 0:46

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

Lê Quang Hiếu
Xem chi tiết
Nguyễn Minh Quang
21 tháng 3 2022 lúc 11:31

a. \(y'\left(x_0\right)=-2x_0+3\)

b. phương trình tiếp tuyến tại x0 =2 là 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)

c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)

d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1 

hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)

Khách vãng lai đã xóa
Ngô Thái Hà
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 20:13

\(y'=-x^2+4x\)

\(y'\left(-2\right)=-4-8=-12\)

\(y\left(-2\right)=\dfrac{29}{3}\)

Phương trình tiếp tuyến:

\(y=-12\left(x+2\right)+\dfrac{29}{3}\Leftrightarrow y=-12x-\dfrac{43}{3}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 22:30

a: \(y'=\dfrac{\left(x-4\right)'\left(2x+1\right)-\left(x-4\right)\left(2x+1\right)'}{\left(2x+1\right)^2}\)

\(=\dfrac{2x+1-2\left(x-4\right)}{\left(2x+1\right)^2}=\dfrac{9}{\left(2x+1\right)^2}\)

Khi x=-1 thì \(y=\dfrac{-1-4}{-2+1}=\dfrac{-5}{-1}=5\)

Khi x=-1 thì \(y'=\dfrac{9}{\left(-2\cdot1+1\right)^2}=\dfrac{9}{\left(-2+1\right)^2}=9\)

Phương trình tiếp tuyến tại điểm có hoành độ x=-1 là:

y-5=9(x+1)

=>y-5=9x+9

=>y=9x+14

b: \(y'=\dfrac{2'\left(x-3\right)-2\left(x-3\right)'}{\left(x-3\right)^2}=\dfrac{-2}{\left(x-3\right)^2}\)

Khi x=2 thì \(y=\dfrac{2}{2-3}=-1;y'=-\dfrac{-2}{\left(2-3\right)^2}=-2\)

Phương trình tiếp tuyến tại điểm có hoành độ bằng 2 là:

y-(-1)=-2(x-2)

=>y+1=-2x+4

=>y=-2x+3