Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:
1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc tù)
2) (d) đi qua A(1;2)
3) (d) tạo với Ox góc 60 độ
4) tìm m biết (d) cắt đường thẳng y=2x-3 tại điểm có hoành độ bằng 3
5) cho m=1. Vẽ đồ thị và tính khoảng cách từ O đến đường thẳng, gọi giao điểm của đồ thị với Ox và Oy là A và B. tính diện tích và chu vi tam giác AOB
1-4 bạn tk ở đây: Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc... - Hoc24
5. \(m=1\Leftrightarrow y=-x-2\)
PT giao Ox tại A và Oy tại B của đths: \(\left\{{}\begin{matrix}y=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\Rightarrow OA=2\\x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\Rightarrow OB=2\end{matrix}\right.\)
Gọi H là chân đường cao từ O tới đths
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow OH^2=2\Leftrightarrow OH=\sqrt{2}\)
Vậy k/c từ O đến đt là \(\sqrt{2}\)
Áp dụng PTG: \(AB=\sqrt{OA^2+OB^2}=2\sqrt{2}\)
Vậy \(P_{ABC}=AB+BC+CA=4+2\sqrt{2};S_{ABC}=\dfrac{1}{2}OH\cdot AB=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{2}=2\left(đvdt\right)\)
Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:
1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc tù)
2) (d) đi qua A(1;2)
3) (d) tạo với Ox góc 60 độ
4) tìm m biết (d) cắt đường thẳng y=2x-3 tại điểm có hoành độ bằng 3
5) cho m=1. Vẽ đồ thị và tính khoảng cách từ O đến đường thẳng, gọi giao điểm của đồ thị với Ox và Oy là A và B. tính diện tích và chu vi tam giác AOB
6) tìm điểm cố định mà (d) luôn đi qua
7) tìm m để (d) cắt đường thẳng y=2x-1 tại một điểm trên trục tung
Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:
1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc tù)
2) (d) đi qua A(1;2)
3) (d) tạo với Ox góc 60 độ
4) tìm m biết (d) cắt đường thẳng y=2x-3 tại điểm có hoành độ bằng 3
\(1,\) Nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Tù \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(2,\Leftrightarrow m-2+m-3=2\Leftrightarrow2m-5=2\Leftrightarrow m=\dfrac{7}{2}\)
\(3,\) PT giao Ox tại B và Oy tại C là \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m-2\right)x=3-m\Rightarrow x=\dfrac{3-m}{m-2}\Rightarrow A\left(\dfrac{3-m}{m-2};0\right)\Rightarrow OA=\left|\dfrac{3-m}{m-2}\right|\\x=0\Rightarrow y=m-3\Rightarrow B\left(0;m-3\right)\Rightarrow OB=\left|m-3\right|\end{matrix}\right.\)
(d) tạo với Ox góc 60 độ là góc nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Và \(\tan60^0=\dfrac{OB}{OA}=\left|m-3\right|\cdot\dfrac{\left|m-2\right|}{\left|3-m\right|}=\left|\dfrac{\left(m-3\right)\left(2-m\right)}{m-3}\right|=\left|2-m\right|\)
\(\Leftrightarrow\left|2-m\right|=\sqrt{3}\)
Mà \(m>2\Leftrightarrow2-m< 0\Leftrightarrow2-m=-\sqrt{3}\Leftrightarrow m=2+\sqrt{3}\)
\(4,\) PT hoành độ giao điểm tại hoành độ 3:
\(\left(m-2\right)x+m-3=2x-3\)
Thay \(x=3\Leftrightarrow3m-6+m-3=3\)
\(\Leftrightarrow4m=12\Leftrightarrow m=3\)
Cho hàm số bậc nhất y = (2m + 1)x + m – 2. Tìm m biết rằng góc tạo bởi đường thẳng và trục Ox bằng 45 ° .
A. m = 0
B. m = 1
C. m = -1
D. m = 2
Đáp án A
Vì hàm số đã cho là hàm số bậc nhất nên 2m + 1 ≠ 0 ⇔ m ≠ (-1)/2 .
Gọi góc α là góc tạo bởi đường thẳng và trục Ox . Theo giả thiết α = 45 ° . Ta có:
tan α = a ⇒ tan45 ° = 2m + 1
⇔ 1 = 2m + 1 ⇔ 0 = 2m ⇔ m = 0
Cho hàm số bậc nhất y=-2x -5 (d) và y= -x (d') A. Vẽ đồ thị d và d' của 2 hàm số đã cho trêb cùng 1 hệ tọa đọi Oxy B. Tìm tọa độ điểm M là giao điểm của 2 đồ thị vừa vẽ ( bằng phép tính) C. Tính góc alpha tạo bởi đường thẳng d với trục hoành Ox ( làm tròn kết quả đến độ) D. Gọi giao điểm của d với trục Oy là A, tính chu vi và diện tích tam giác MOA ( đơn vị đo trên các trục tọa độ là cm)
a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)
b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)
\(\Rightarrow M\left(-5;5\right)\)
c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)
\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)
\(\left(d'\right):y=-x\Rightarrow k_1-1\)
\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)
\(\Rightarrow\widehat{M}\sim18^o\)
d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)
\(\Leftrightarrow y=-2.0-5=-5\)
\(\Rightarrow A\left(0;-5\right)\)
\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)
\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)
\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)
Chu vi \(\Delta MOA:\)
\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)
\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)
\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)
\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)
\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)
\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)
Diện tích \(\Delta MOA:\)
\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)
\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)
\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)
x | 0 | -5/2 | 1 |
y=-2x-5 | -5 | 0 | |
y=-x | 0 | -1 |
*) Đồ thị:
b) Phương trình hoành độ giao điểm của (d) và (d'):
\(-2x-5=-x\)
\(\Leftrightarrow-2x+x=5\)
\(\Leftrightarrow x=-5\) \(\Rightarrow y=-\left(-5\right)=5\)
Vậy tọa độ giao điểm của (d) và (d') là \(M\left(-5;5\right)\)
c) Ta có:
\(tanB=\dfrac{OA}{OB}=\dfrac{-5}{-\dfrac{5}{2}}=2\)
\(\Rightarrow\widehat{B}\simeq63^0\)
Mà góc tạo bởi d với trục hoành là \(\widehat{OBM}\)
\(\Rightarrow\widehat{OBM}\simeq180^0-63^0=117^0\)
d) Ta có:
\(OM^2=5^2+5^2=50\)
\(\Rightarrow OM=5\sqrt{2}\left(cm\right)\)
\(AM^2=5^2+10^2=125\)
\(\Rightarrow AM=5\sqrt{5}\left(cm\right)\)
Chu vi \(\Delta MOA\):
\(5\sqrt{2}+5\sqrt{5}+5=5\left(\sqrt{2}+\sqrt{5}+1\right)\left(cm\right)\)
Diện tích \(\Delta MOA\)
\(S_{MOA}=\dfrac{MH.OA}{2}=\dfrac{5.5}{2}=25\left(cm^2\right)\)
Bài II (2.5 điểm): Cho hàm số bậc nhất y = (m - 1) x +m có đồ thị là đường thẳng (d) với m khác 1
1. Với m=2, vẽ đồ thị hàm số và tính số đo góc tạo bởi đường thẳng (d) và trục Ox (làm tròn đến độ)
2. Tìm m để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 1
3. Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m
Em cần gấp ạ
1: Khi m=2 thì y=(2-1)x+2=x+2
Vẽ đồ thị:
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
2: Thay x=1 và y=0 vào (d), ta được:
\(1\left(m-1\right)+m=0\)
=>2m-1=0
=>m=1/2
3:
y=(m-1)x+m
=mx-x+m
=m(x+1)-x
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}x+1=0\\y=-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Cho các hàm số: y = (m - 1)x + 2m – 5 (1)
y = (3 – 2m)x + m – 8 (2)
Tìm m để góc tạo bởi đồ thị hàm số (1) với Ox là
60o
. Tìm m để góc tạo bởi đồ thị hàm số (2) với Ox là
120o
.
Ta có : tg60=m-1
\({\sqrt{3}=m-1} \) \(->m=\sqrt{3} +1\)
\(tan120=3-2m <=> -\sqrt{3}=3-2m \)
m=\(\frac{3+\sqrt{3}}{2}\)
Bài 1: Cho hàm số bậc nhất y=(m-1)x+2
a)Tìm m để (d)tạo với Ox một góc nhọn
b)Tìm m để (d)đi qua A (2,5)
c)TÌm tọa độ giảo điểm A,B của (d) với Ox ,Oy
d)Tìm m để tam giác ABC vuông cân
Cho hàm số bậc nhất y=(m-2)x+m+3 (d) (m ≠ 2)
1) Tìm m biết (d) tạo với trục hoành 1 góc 150o
2) tìm m dể khảng cách từ gốc tọa độ đến đường thẳng (d) =1
3) tìm m để (d) cắt Ox,Oy tạo thành tam giác có diện tích =2
giúp mik giải bài này vs mik đag cần gấp