Chứng minh đẳng thức
1 a - a + 1 a - 1 : a + 1 a - 2 a + 1 = a - 1 a với a > 0, a ≠ 1
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Lời giải:
Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:
$a+b\geq 2\sqrt{ab}$
$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$
$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$
Ta có đpcm
Dấu "=" xảy ra khi $a=b$
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
help me vs
a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\forall a\)
\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)
b) Áp dụng bất đẳng thức Cosi ta có:
\(a+1\ge2\sqrt{a};b+1\ge2\sqrt{b};c+1\ge2\sqrt{c}\\ \Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)
Dấu = xảy ra khi và chỉ khi a=b=c=1
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được
Chứng minh bất đẳng thức cô-si với 3 số a,b,c không âm: \(\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\). Dấu đẳng thức xảy ra khi a=b=c.
Áp dụng chứng minh bất đẳng thức: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
chứng minh đẳng thức cho a+b=1.chứng minh rằng a\(^3+b^3+3ab=1\)
Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\) (1)
Thay a + b = 1 vào (1) ta được:
\(1^3=a^3+3ab.1+b^3\)
\(1^3=a^3+3ab+b^3\)
Hay: \(a^3+3ab+b^3=1\)
=> đpcm
Chứng minh bất đẳng thức sau:
\(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) với a>1
\(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) <=> \(\left(\dfrac{1}{\sqrt{a}}\right)^2< \left(\sqrt{a+1}-\sqrt{a-1}\right)^2\)
<=> \(\dfrac{1}{a}< \left(a+1\right)+\left(a-1\right)-2\sqrt{a^2-1}\)
<=> \(2\sqrt{a^2-1}< 2a-\dfrac{1}{a}\)
<=> \(4\left(a^2-1\right)< 2\left(2a-\dfrac{1}{a}\right)^2\) <=> \(\dfrac{1}{a^2}>0\)
Vậy \(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) với mọi a ≥ 0=> đpcm.
chứng minh đẳng thức
-[a+b+c]+[b-c]-[a-c-1]=1+c-2a
Chứng minh bất đẳng thức Cô-si với n số không âm.
1) chứng minh bất đẳng thức Bu-nhi-a-cốp-ski với bộ n số.
Ai nhanh mình tick!^_^
chứng minh các đẳng thức sau 1/a(a+1) = 1/a trừ 1/a+1
\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
Vậy \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\).
Đề bài: CM \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Bài làm:
Ta có: \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}\)
\(=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}\)
\(=\frac{1}{a}-\frac{1}{a+1}\)
=> \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
=> đpcm
Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)
\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)