Đường thẳng 3x – 2y = 5 đi qua điểm:
A. (1; - 1)
B. (5; -5)
C. (1; 1)
D. (-5; 5)
Viết phương trình đường thẳng thoả mãn yêu cầu sau:
a) Đi qua A(0;2) và song song với đường thẳng 3x - 2y - 5 = 0
b) Đi qua A(0;2) và vuông góc với đường thẳng 3x - 2y - 5 = 0
c) Đi qua B(-1;5) và song song với đường thẳng x = 1 - 2t và y = 3 - 5t
d) Đi qua B(-1;5) và vuông góc với đường thẳng x = 1 - 2t và y = 3 - 5t
a: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0
Vì (d)//3x-2y-5=0 nên (d) có VTPT là (3;-2)
mà (d) đi qua A(0;2)
nên phương trình đường thẳng (d) là:
3(x-0)+(-2)(y-2)=0
=>3x-2y+4=0
b: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0
Vì (d)\(\perp\)(3x-2y-5=0) nên (d) nhận \(\overrightarrow{u}=\left(3;-2\right)\) làm vecto chỉ phương
=>VTPT của (d) là (2;3)
mà (d) đi qua A(0;2)
nên phương trình đường thẳng (d) là:
2(x-0)+3(y-2)=0
=>2x+3y-6=0
c: Đặt (d1): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)
=>VTCP là (-2;-5)=(2;5)
=>VTPT là (-5;2)
Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm
Vì (d)//(d1) nên (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến
Vì (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến và (d) đi qua B(-1;5) nên phương trình đường thẳng (d) là:
-5(x+1)+2(y-5)=0
=>-5x-5+2y-10=0
=>-5x+2y-15=0
d: Đặt (d2): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)
=>VTCP là (-2;-5)=(2;5)
Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm
Vì (d)\(\perp\)(d2) và \(\overrightarrow{u}=\left(2;5\right)\) là vecto chỉ phương của (d2) nên (d) nhận \(\overrightarrow{u}=\left(2;5\right)\) làm vecto pháp tuyến
mà (d) đi qua B(-1;5)
nên phương trình đường thẳng (d) là:
2(x+1)+5(y-5)=0
=>2x+2+5y-25=0
=>2x+5y-23=0
Cho 3 điểm A ( 0; -8 ) , B ( 5/2 ; 2 ) , C ( 1; 7 ) và đường thẳng (d1) có phương trình 3x + 2y = -1
a, Viết phương trình đường thẳng (d2) đi qua hai điểm A và B
b, Viết phương trình đường thẳng (d3) đi qua điểm C và song song với (d1)
Tìm giao điểm của hai đường thẳng:
( d 1 ): ax + 2y = -3 và ( d 2 ): 3x – by = 5, biết rằng ( d 1 ) đi qua điểm M(3; 9) và ( d 2 ) đi qua điểm N(-1; 2).
*Đường thẳng ( d 1 ): ax + 2y = -3 đi qua điểm M(3; 9) nên tọa độ điểm M nghiệm đúng phương trình đường thẳng.
Ta có: a.3 + 2.9 = -3 ⇔ 3a + 18 = -3 ⇔ 3a = -21 ⇔ a = -7
Phương trình đường thẳng ( d 1 ): -7x + 2y = -3
*Đường thẳng ( d 2 ): 3x – by = 5 đi qua điểm N(-1; 2) nên tọa độ điểm N nghiệm đúng phương trình đường thẳng.
Ta có: 3.(-1) – b.2 = 5 ⇔ -3 – 2b = 5 ⇔ 2b = -8 ⇔ b = -4
Phương trình đường thẳng ( d 2 ): 3x + 4y = 5
*Tọa độ giao điểm của ( d 1 ) và ( d 2 ) là nghiệm của hệ phương trình:
1. Cho đường thẳng $(d):$ $y = ax+b$. Tìm $a$ và $b$ để đường thẳng $(d)$ song song với đường thẳng $(d'):$ $y = 5x+6$ và đi qua điểm $A(2;3)$.
2. Giải hệ phương trình $\left\{ \begin{aligned} & 3x + 2y = 11\\ & x + 2y = 5\\ \end{aligned}\right.$.
Bài 2 :
\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)
Lấy phương trình (1) - phương trình (2) ta được :
\(2x=6\Leftrightarrow x=3\)
Thay x = 3 vào phương trình (2) ta được :
\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)
Vậy \(\left(x;y\right)=\left(3;1\right)\)
1 , a = 5 , b = -7
2 , x = 3 , y = 1
Tìm m, n để đường thẳng mx – 2y = n đi qua điểm A(2;1) và giao điểm của hai đường thẳng (d1): x – 2y = 1, (d2): –3x + y = 7.
gọi giao điểm của 2 đường thẳng (d1) và (d2) là M(x1,y1)
Tọa độ giao điểm của đt (d1) và (d2) là nghiệm của hệ phương trình(hpt):
\(\left\{{}\begin{matrix}x_1-2y_1=1\\-3x_1+y_1=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x_1=-3\\y_1=-2\end{matrix}\right.\) <=> M(-3;-2)
Vì đường thẳng mx-2y=n đi qua điểm A(2;1) và giao điểm của 2 đường thẳng trên nên ta có hpt:
\(\left\{{}\begin{matrix}2m-2=n\\-3m+4=n\end{matrix}\right.< =>^{ }\left\{{}\begin{matrix}m=\frac{6}{5}\\n=\frac{2}{5}\end{matrix}\right.\)
Vậy....
Cho bà đường thẳng d1:5x-2y=-1 , d2:3x-2y=-11, d3: ax+by=c. Xác định a,b,c để ba đường thẳng đồng quy biết d3 đi qua điểm M(2;1)
Tìm a và b biết đường thẳng y = ax + b đi qua hai điểm A(2;-1) và B (1;-3) b tìm toạ độ giao điểm của hai đường thẳng (d1) 2x+y=-3 và (d2) 3x-2y=-1
a: Theo đề, ta có hệ:
2a+b=-1 và a+b=-3
=>a=2 và b=-5
b; tọa độ giao là:
2x+y=-3 và 3x-2y=-1
=>x=-1 và y=-1
Cho hai đường thẳng d1 : y = 5 x - 3 và d2 y = -2 x + 4 Viết phương trình đường thẳng đi qua giao điểm của d1, d2 và song song với đường thẳng 3x + 2y = 1
(d3): \(3x+2y=1\Rightarrow y=-\frac{3}{2}x+\frac{1}{2}\)
Phương trình tọa độ giao điểm A của (d1) và (d2):
\(\left\{{}\begin{matrix}y=5x-3\\y=-2x+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)
Gọi pt (d) có dạng \(y=ax+b\)
Do (d) qua A và song song với (d3) nên:
\(\left\{{}\begin{matrix}a=-\frac{3}{2}\\a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)