Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2024 lúc 22:07

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{EFB}+\widehat{ECB}=180^0\)

mà \(\widehat{EFB}+\widehat{MFB}=180^0\)(hai góc kề bù)

nên \(\widehat{MFB}=\widehat{MCE}\)

Xét ΔMFB và ΔMCE có

\(\widehat{MFB}=\widehat{MCE}\)

\(\widehat{M}\) chung

Do đó: ΔMFB~ΔMCE
=>\(\dfrac{MF}{MC}=\dfrac{MB}{ME}\)

=>\(MF\cdot ME=MB\cdot MC\)

Nau Ly
Xem chi tiết
Bưu Ca
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
Bùi Việt Anh
Xem chi tiết
Đỗ Thị Thùy Ngân
Xem chi tiết
Trương Huy Hoàng
17 tháng 3 2021 lúc 20:55

1, Xét tứ giác AEHF có: \(\widehat{AFH}+\widehat{AEH}=90^o+90^o=180^o\)

Hai góc \(\widehat{AFH}\) và \(\widehat{AEH}\) đối nhau

\(\Rightarrow\) Tứ giác AEHF nội tiếp (dhnb tứ giác nt)

2, Xét tứ giác AEDB có: \(\widehat{AEB}\) = \(\widehat{ADB}\) = 90o 

Hai góc có đỉnh kề nhau cùng nhìn AB

\(\Rightarrow\) Tứ giác AEDB nội tiếp (dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{EBD}=\widehat{EAD}\) (2 góc nt cùng chắn 1 cung)

Xét \(\Delta\)HBD và \(\Delta\)CAD có: \(\widehat{HDB}=\widehat{CDA}=90^o\)

\(\widehat{HBD}=\widehat{CAD}\) (cmt)

\(\Rightarrow\) \(\Delta\)HBD ~ \(\Delta\)CAD (gg)

\(\Rightarrow\) \(\dfrac{HD}{CD}=\dfrac{BD}{AD}\) (tỉ số đồng dạng)

\(\Rightarrow\) DB.DC = DH.DA (đpcm)

Chúc bn học tốt!

DA NANG
Xem chi tiết
Rayleigh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 21:06

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

=>ΔCDA đồng dạng với ΔCEB

=>CD/CE=CA/CB

=>CD/CA=CE/CB; CD*CB=CA*CE
b: Xét ΔCDE và ΔCAB có

CD/CA=CE/CB

góc C chung

=>ΔCDE đồng dạng với ΔCAB

c: góc BEC=góc BFC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC=góc DEC

LÊ ĐÌNH HẢI
Xem chi tiết
Minh Phương
31 tháng 5 2023 lúc 20:46

Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.

Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.

Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.

Vì H là giao điểm của AD và BE, ta có AH  ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.

Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).

Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.

Vậy, H là trực tâm của tam giác ASM.