Hai nghiệm của phương trình x x + 1 - 10 x + 1 x = 3 là x 1 > x 2 . Tính 3 x 1 + 4 x 2 .
A. −3
B. 3
C. 7
D. −7
a) Cho phương trình $x^{2}-m x-10 m+2=0$ có một nghiệm $x_{1}=-4$. Tìm $m$ và nghiệm còn lại.
b) Cho phương trình $x^{2}-6 x+7=0 .$ Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó.
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Vậy m=3, và ngiệm còn lại x2=7
a)
m = 3
x2=7
giúp em câu b với
Cho phương trình \(mx^2+\left(2m-2\right)x+m-1=0\) ,(1) ( với m là tham số )
a) Định m để phương trình ( 1 ) có hai nghiệm phân biệt.
b) Gọi 1 2 x x; là hai nghiệm của phương trình ( 1 ). Chứng minh rằng giá trị biểu thức \(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1\) luôn là hằng số.
b) Theo hệ thức Vi ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m-2}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2-2m}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
Ta có:
\(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1=1013\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)+1\)
\(=1013\left(\dfrac{x_1+x_2}{x_1.x_2}\right)+1=1013\left(\dfrac{\dfrac{2-2m}{m}}{\dfrac{m-1}{m}}\right)+1\)
\(=1013.\dfrac{-2\left(m-1\right)}{m-1}+1=-2026+1=-2025\), luôn là hằng số (đpcm)
Tìm giá trị của k biết rằng một trong hai phương trình 2x=6 và 10-kx=9 nhận x=3 làm nghiệm, phương trình còn lại nhận x=-1 làm nghiệm.
2x = 6
⇔ x = 3
⇒ Phương trình 10 - kx = 9 nhận -1 làm nghiệm
Ta có:
10 -k.(-1) = 9
⇔ 10 + k = 9
⇔ k = -1
Vậy k = -1
Tìm giá trị của k, biết rắng một trong hai phương trình sau đây nhận x = 5 là nghiệm, phương trình còn lại nhận x = -1 là nghiệm: 2x = 10 và 3 – kx = 2
Thay x = 5 vào vế trái của phương trình 2x = 10, ta thấy giá trị của hai vế bằng nhau. Vậy x = 5 là nghiệm của phương trình 2x = 10.
Khi đó x = -1 là nghiệm của phương trình 3 – kx = 2.
Thay x = -1 vào phương trình 3 – kx = 2, ta có:
3 – k(-1) = 2 ⇔ 3 + k = 2 ⇔ k = -1
Vậy k = -1.
Cho hai phương trình: x2-5x+6=0 (1)
x+(x-2)(2x+1)=2 (2)
a) Chứng minh hai phương trình có nghiệm chung là x=2
b) Chứng minh: x=3 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương với nhau không, vì sao?
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Cho hai phương trình \(x^2-8x+4m=0\left(1\right)\) và x\(^2+X-4m\)=0 (2)
a) Tìm m để hai phương trình có nghiệm chung.
b) Tìm m để một nghiệm của phương trình (1) gấp đôi một nghiệm của phương trình (2).
Cho phương trình log 3 2 x 2 - x + m x 2 + 1 = x 2 + x + 4 - m . Có bao nhiêu giá trị nguyên của tham số m Î [1; 10] để phương trình có hai nghiệm trái dấu
A. 7
B. 8
C. 6
D. 5
cho phương trình \(x^2\)-2(m-1)x-3-m=0
a chứng minh phương trình có hai nghiệm với mọi m
b xác định m để phương trình có hai nghiệm \(x_1,x_2\)thỏa mản \(x_1^2\)+\(x_2^2\)≥10
`a)` Ptr có:`\Delta' =[-(m-1)]^2-(-3-m)`
`=m^2-2m+1+3+2m=m^2+4 > 0 AA m`
`=>` Ptr có `2` nghiệm `AA m`
`b) AA m`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-3-m):}`
Ta có:`x_1 ^2+x_2 ^2 >= 10`
`<=>(x_1+x_2)^2-2x_1.x_2 >= 10`
`<=>(2m-2)^2-2(-3-m) >= 10`
`<=>4m^2-8m+4+6+2m >= 10`
`<=>4m^2-6m+10 >= 10`
`<=>4m^2-6m >= 0`
`<=>2m(2m-3) >= 0`
`<=>` $\left[\begin{matrix} m \ge \dfrac{3}{2}\\ m \le 0\end{matrix}\right.$
Vậy `m >= 3/2` hoặc `m <= 0` thì t/m yêu cầu đề bài
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm
b: Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2>=10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>2m(2m-3)>=0
=>m>=3/2 hoặc m<=0
a, Ta có:
\(\Delta'=\left[-\left(m-1\right)\right]^2-1\left(-3-m\right)\\ =\left(m-1\right)^2-\left(-3-m\right)\\ =m^2-2m+1+3+m\\ =m^2-m+4\\ =\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{15}{4}\\ =\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
b, Theo Vi-ét:\(x_1+x_2=2m-2;x_1x_2=-m-3\)
\(x_1^2+x_2^2\ge10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\\ \Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)-10\ge0\\ \Leftrightarrow4m^2-8m+4+2m+6-10\ge0\\ \Leftrightarrow4m^2-6m\ge0\\ \Leftrightarrow2m\left(2m-3\right)\ge0\\ \Leftrightarrow m\left(2m-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge0\\2m-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\le0\\2m-3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge0\\m\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le0\\m\le\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{3}{2}\\m\le0\end{matrix}\right.\)
Thứ hai cho phương trình x² - 2 (m - 1) x -3-m=0(ẩn x)(1) a) Chứng minh rằng phương trình có nghiệm x1,x² với mọi m b) Tìm m để phương trình có hai nghiệm trái dấu c) Tìm m để phương trình có hai nghiệm cùng âm d) Tìm m sao cho x1 x2 của phương trình thỏa mãn x1^2 + x2^2 lớn hơn hoặc bằng 0 e) tìm hệ thức liên hệ giữa x1 và x2 không phụ thuộc m f) hãy biểu thị x1 qua x2
a:Δ=(2m-2)^2-4(-m-3)
=4m^2-8m+4+4m+12
=4m^2-4m+16
=(2m-1)^2+15>=15>0
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì -m-3<0
=>m+3>0
=>m>-3
c: Để phương trình có hai nghiệm âm thì:
2m-2<0 và -m-3>0
=>m<1 và m<-3
=>m<-3
d: x1^2+x2^2=(x1+x2)^2-2x1x2
=(2m-2)^2-2(-m-3)
=4m^2-8m+4+2m+6
=4m^2-6m+10
=4(m^2-3/2m+5/2)
=4(m^2-2*m*3/4+9/16+31/16)
=4(m-3/4)^2+31/4>0 với mọi m
cho phương trình: x^2-2(m-1)x-3-m=0
a. chứng tỏ rằng phương trình có nghiệm x1,x2 với mọim
b. tìm m để phương trình có hai nghiệm trái dấu
c. tìm m để phương trình có hai nghiệm cùng dấu
d. tìm m sao cho nghiệm số x1,x2 của phương trình thỏa mãn x1^2+x2^2=10