Đưa thừa số ra ngoài dấu căn:
b) 63 y 3 7 y với y > 0
Đưa thừa số ra ngoài dấu căn:
a) $\sqrt{28 x^{4} y^{2}}$ với $y \leq 0$;
b) $\sqrt{63 a^{2} b^{4}}$ với $a \geq 0$;
c) $\sqrt{147(a-1)^{3}}$;
d) $\sqrt{192(y+2)^{5}}$.
a, -2x^2y căn 7
b, ab^2 căn 63
c, a-1 căn 147a-147
d, y+2 nhân căn [192 nhân (y+2)^3]
a)-2x²y√7
b) 3ab²√7
c) 7(a-1)√3(a-1)
d) 8(y+2)²√3(y+2)
Đưa thừa số ra ngoài dấu căn: 8 y 2 với y > 0
8 y 2 = 4 . 2 y 2 = 2 y 2 = - 2 y 2 ( với y < 0 )
Bài 1 . Đưa thừa số ra ngoài dấu căn a, 3√x² b, -5√y⁴ c, 3√5x d, x√7 với x lớn hơn hoặc bằng 0
Sửa đề: Đưa thừa số vào trong dấu căn
a: \(3\sqrt{x^2}=\sqrt{3^2\cdot x^2}=\sqrt{9x^2}\)
b: \(-5\sqrt{y^4}=-\sqrt{5^2\cdot y^4}=-\sqrt{25y^4}\)
c: \(3\sqrt{5x}=\sqrt{3^2\cdot5x}=\sqrt{45x}\)
d: \(x\sqrt{7}=\sqrt{x^2\cdot7}=\sqrt{7x^2}\)
đưa thừa số ra ngoài dấu căn
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)với a,b,x,y>0
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
Đưa thừa số 81 ( 2 - y ) 4 ra ngoài dấu căn ta được?
A. 9(2 – y)
B. 81 ( 2 – y ) 2
C. 9 ( 2 – y ) 2
D. - 9 ( 2 – y ) 2
đưa thừa số ra ngoài dấu căn
a) √128(x-y)^2
b) √150(4x^2-4x+1)
c) √x^3-6x^2+12x-8
a) \(\sqrt{128\left(x-y\right)^2}\)
\(=\sqrt{8^2\cdot2\left(x-y\right)^2}\)
\(=\left|8\left(x-y\right)\right|\sqrt{2}\)
\(=8\left|\left(x-y\right)\right|\sqrt{2}\)
b) \(\sqrt{150\left(4x^2-4x+1\right)}\)
\(=\sqrt{5^2\cdot6\left(2x-1\right)^2}\)
\(=\left|5\left(2x-1\right)\right|\sqrt{6}\)
\(=5\left|2x-1\right|\sqrt{6}\)
c) \(\sqrt{x^3-6x^2+12x-8}\)
\(=\sqrt{\left(x-2\right)^3}\)
\(=\sqrt{\left(x-2\right)^2\left(x-2\right)}\)
\(=\left|x-2\right|\sqrt{x-2}\)
a: \(=\sqrt{64\cdot2\cdot\left(x-y\right)^2}=8\sqrt{2}\cdot\left|x-y\right|\)
b; \(=\sqrt{25\cdot6\left(2x-1\right)^2}=5\sqrt{6}\cdot\left|2x-1\right|\)
c: \(=\sqrt{\left(x-2\right)^3}=\left|x-2\right|\cdot\sqrt{x-2}\)
Đưa thừa số ra ngoài dấu
√(72a2b4 ) với a < 0.
√(72a2b4 ) = √((6ab2)2.2) = √2 |6ab2 | = -6√2ab2 (do a < 0)
\(\sqrt{48.45}\) Đưa thừa số ra ngoài dấu căn:
\(\sqrt{225.17}\)
\(\sqrt{a^3b^7}với\) \(a\ge0;b\ge0\)
\(\sqrt{x^5\left(x-3\right)^2}\) với \(x>0\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
Viết các số hoặc biểu thức dưới dấu căn thành dạng tích rồi đưa 1 thừa số ra ngoài dấu căn.
√108(a + 7)^2
√81a^4b^7
√16a^5b^3 (a ≥ 0, b ≤ 0)
a: \(\sqrt{36\cdot3\cdot\left(a+7\right)^2}=6\sqrt{3}\left|a+7\right|\)
b: \(\sqrt{9^2\cdot a^4\cdot b^3\cdot b^3\cdot b}=9a^2b^3\sqrt{b}\)
c: Nếu đk xác định như này thì \(C=\sqrt{16a^5b^3}\) chỉ xác định với a=b=0 thôi nha bạn
=>C=0