Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Minh Phúc
Xem chi tiết
missing you =
8 tháng 5 2021 lúc 19:40

phương trình có nghiệm khi:

\(\Delta\)\(\ge\)0<=>[-(2m+1)]^2-4.(m^2-1)\(\ge\)0

<=>(2m+2)^2-4m^2+4\(\ge\)0

<=>4m^2+8m+4-4m^2+4\(\ge\)0

<=>8m+8\(\ge\)0

<=>8(m+1)\(\ge\)0

<=>m\(\ge\)-1

vậy m\(\ge\)-1 thì phương trình có nghiệm

Trần văn dương
8 tháng 5 2021 lúc 21:33

△≥0⇔(2m+2)^2-4(m^2-1)≥0

⇔4m^2+8m+4-4m^2+4≥0

⇔8m+8≥0

⇔m≥-1

Vậy phương trình có nghiệm khi m≥-1

Hug Hug - 3 cục bánh bao...
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2022 lúc 14:42

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

Nguyễn Đình Hữu
Xem chi tiết
missing you =
24 tháng 11 2021 lúc 22:37

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 22:39

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

Nguyễn Việt Lâm
14 tháng 12 2020 lúc 22:44

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
14 tháng 12 2020 lúc 22:55

3.

Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)

\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)

\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)

Mặt khác:

\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)

\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)

(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2017 lúc 17:36

Đáp án A 

Thanh Linh
Xem chi tiết
Thanh Linh
15 tháng 6 2021 lúc 22:02

giúp mình với , mình cảm ơn ạ ! 

missing you =
16 tháng 6 2021 lúc 10:06

\(pt:x^2-2mx+m-4=0\left(1\right)\)

\(\Delta'=\left(-m\right)^2-\left(m-4\right)=m^2-m+4=m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}-\dfrac{1}{4}+4\)

\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{6}>0\left(\forall m\right)\)

=> \(pt\left(1\right)\) luôn có 2 nghiệm phân biệt x1,x2 \(\forall m\)

\(Theo\) \(\)Vi ét\(=>\left\{{}\begin{matrix}x1+x2=2m\left(1\right)\\x1x2=m-4\left(2\right)\end{matrix}\right.\)

từ(1)

với \(x1x2=m-4=>m=x1x2+4\)

thay \(m=x1x2+4\) vào (1)\(\)\(=>x1+x2=2\left(x1x2+4\right)\)

\(< =>x1+x2=2x1x2+8\)

\(< =>x1+x2-2x1x2=8\)

\(< =>2x1+2x2-4x1x2=16\)

\(=>2x1\left(1-2x2\right)-\left(1-2x2\right)=15\)

\(< =>\left(2x1-1\right)\left(1-2x2\right)=16\)(3)

để (3) nguyên \(< =>\left(2x1-1\right)\left(1-2x2\right)\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

đến đây bạn tự lập bảng giá trị để tìm x1,x2 rồi từ đó thay thế x1,x2 vào(2) để tìm m nhé (mik ko làm nữa dài lắm)

 

 

 

 

 

 

 

 

 

Ngọc Phương Phạm Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 22:22

a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

gấu béo
Xem chi tiết
Rin Huỳnh
4 tháng 2 2024 lúc 22:53

Đặt \(t=2^x>0\).

Phương trình ban đầu trở thành: \(t^2-2t+m=0\) (*)

Để phương trình ban đầu có 2 nghiệm phân biệt thì (*) phải có 2 nghiệm phân biệt dương: \(\left\{{}\begin{matrix}\Delta'>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\2>0\left(đúng\right)\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

Nguyễn Phúc Trường An
Xem chi tiết
Di Thiên
Xem chi tiết