Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VUX NA
Xem chi tiết
VUX NA
18 tháng 8 2021 lúc 18:42

các bn ơi giúp mình với

 

loancute
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 17:07

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=u\\y^2+y=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;2\right);\left(2;6\right)\)

TH1: \(\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\) \(\Rightarrow...\)

TH2: ... tương tự

Diệu Ngọc
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:09

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=12\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

????1298765
Xem chi tiết
Monkey D. Luffy
8 tháng 12 2021 lúc 17:53

Trừ 2 vế của HPT

\(\Leftrightarrow x^2-xy+y^2-x+y-xy=0\\ \Leftrightarrow x^2+y^2-x+y-2xy=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)

Với \(x=y\Leftrightarrow x-x+x^2=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\Rightarrow y=\sqrt{7}\\x=-\sqrt{7}\Rightarrow y=-\sqrt{7}\end{matrix}\right.\)

Với \(x=y+1\Leftrightarrow y+1-y+y\left(y+1\right)=7\)

\(\Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)

Vậy ...

 

Rin Huỳnh
8 tháng 12 2021 lúc 17:56

x^2 - xy + y^2 = x - y + xy

<=> x^2 - 2xy + y^2 - (x - y) = 0

<=> (x - y)^2 - (x - y) = 0

<=> (x - y)(x - y - 1) = 0

TH1: x - y = 0 <=> x = y

x^2 - xy + y^2 = 7

<=> x^2 = 7 <=> x = sqrt(7) hoặc x = -sqrt(7)

Với x = sqrt(7) thì y = sqrt(7)

Với x = -sqrt(7) thì y = -sqrt(7)

TH2: x - y - 1 = 0 <=> x = y + 1

x - y + xy = 7

<=> (y + 1)y + 1 = 7

<=> y^2 + y - 6 = 0

<=> (y - 2)(y + 3) = 0

<=> y = 2 hoặc y = -3

Với y = 2 thì x = 2 + 1 = 3

Với y = -3 thì x = -3 + 1 = -2

ILoveMath
8 tháng 12 2021 lúc 17:58

\(\left\{{}\begin{matrix}x-y+xy=7\\x^2-xy+y^2=7\end{matrix}\right.\Leftrightarrow x-y+xy-x^2+xy-y^2=0\\ \Leftrightarrow x^2-2xy+y^2-x+y=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)

Với x=y thế vào pt(1) ta được:

\(x-y+xy=7\\ \Leftrightarrow y-y+y.y=7\\ \Leftrightarrow y^2=7\\ \Leftrightarrow\left[{}\begin{matrix}y=\sqrt{7}\Rightarrow x=\sqrt{7}\\y=\sqrt{7}\Rightarrow x=\sqrt{7}\end{matrix}\right.\)

Với x=y-1 thế vào pt(1) ta được:

\(y-1-y+\left(y+1\right).y=7\\ \Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)

ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2021 lúc 14:31

Cộng vế:

\(\Rightarrow x^2+y^2+2xy+x+y=20\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-5-x\end{matrix}\right.\)

Thế vào pt đầu...

trần lê tuyết mai
Xem chi tiết
Lê Anh Khoa
21 tháng 4 2022 lúc 21:04

đặt x+y = u ; xy = v đk: u2 ≥ 4v 

\(\left\{{}\begin{matrix}u+v=5\\u^2-v=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u^2+u-12=0\left(1\right)\\u+v=5\left(2\right)\end{matrix}\right.\)

từ pt 1 => \(\left[{}\begin{matrix}u=-4\\u=3\end{matrix}\right.\)

nghiệm u = - 4 loại 

u = 3 nhận => v = 2 

<=> x+y = 3 ; xy = 2 

đặt x+y = S ; xy = P đk: S2 ≥ 4P 

=> x và y là nghiệm của phương trình 

X2 - SX + P = 0 

= X2 - 3X + 2 = 0 

=> \(\left[{}\begin{matrix}X=2\\X=1\end{matrix}\right.\)

vậy (x;y) = {(1;2);(2;1)} 

 

Hải Yến Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 21:54

\(\Leftrightarrow\left\{{}\begin{matrix}xy+6x-3y-18=xy\\xy-2x+2y-4=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-3y=18\\-2x+2y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=6\\-x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2021 lúc 13:52

\(x+y+xy+1=0\)

\(\Leftrightarrow x\left(y+1\right)+y+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)

Thế xuống pt dưới...

Miko
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:41

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=xy+3y-1\\\left(x+y\right)\left(x^2+1\right)=x^2+y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2+\left(x-3\right)y+x^2+1=0\\x^3+x+x^2y-x^2-1=0\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow y^2-\left(x^2-x+3\right)y-x^3+2x^2-x+2=0\)

\(\Delta=\left(x^2-x+3\right)^2-4\left(-x^3+2x^2-x+2\right)=\left(x^2+x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{x^2-x+3+x^2+x-1}{2}=x^2+1\\y=\dfrac{x^2-x+3-x^2-x+1}{2}=-x+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\left[{}\begin{matrix}x+x^2+1=2\\x-x+2=\dfrac{x^2+1-x+2}{x^2+1}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Trần Việt Khoa
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:40

- Với \(x=0\) không phải nghiệm

- Với \(x\ne0\):

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{y^2+1}{x}=2\\\left(x+y\right)^2-2\left(\dfrac{y^2+1}{x}\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\\dfrac{y^2+1}{x}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\u^2-2v=-1\end{matrix}\right.\)

\(\Rightarrow u^2-2\left(2-u\right)=-1\)

\(\Leftrightarrow u^2+2u-3=0\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=1\\u=-3\Rightarrow v=5\end{matrix}\right.\)

\(\Rightarrow\) ... (bạn tự thế vào giải tiếp)