Chứng minh biểu thức sau không âm với mọi x,y
5x\(^2\)+y\(^2\)-4xy-2y+8x+2013
Chứng minh các biểu thức sau không âm với mọi x,y:
1)\(\left(15x-1\right)^2+3\left(7x+3\right)\left(x+1\right)-\left(x^2-73\right)\)
2)\(5x^2+10y^2-6xy-4x-2y+9\)
3)\(5x^2+y^2-4xy-2y+8x+2013\)
3) 5x2 + y2 -4xy - 2y + 8x + 2013
= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013
= ( 2x - y +1)2 + x2 +2013
Vì ( 2x-y+1)2 \(\ge\)0 \(\forall x,y\); x2 \(\ge\)0\(\forall x\)
=> (2x - y+1)2 + x2 \(\ge\)0
=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0
hay A \(\ge0\)\(\forall x,y\)=> A ko âm
Giúp mk phần 1 và phần 2 vs!!!
HELP ME PLEASE!!!
1\(\left(15x-1\right)^2+3\left(7x+3\right)\left(x+1\right)-\left(x^2-73\right)\))
\(=\left(15x-1\right)^2+21x^2+30x+9-x^2+73\)
\(=\left(15x-1\right)^2+20x^2+30x+82\)
\(=\left(15-1\right)^2+20\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{283}{4}\)
\(=\left(15x-1\right)^2+20\left(x+\frac{3}{4}\right)^2+\frac{283}{4}\)
Vì \(\left(15x-1\right)^2;20\left(x+\frac{3}{4}\right)^2;\frac{283}{4}\ge0\forall x\)=> Biểu thức ko âm
Bài này lm thế nào vậy mn.
C/m biểu thức ko âm với mọi x:5x^2+y^2-4xy-2y+8x+2013
Cm các biểu thức sau ko âm voiứ mọi x, y :
a> x^2+ 5y^2+2x+6y+34
b> 5x^2+10y^2-6xy-4x-2y+9
c> 5x^2+y^2-4xy-2y+8x+2013
chứng minh biểu thức sau không âm với mọi x,y: 5x^2 + 10y^2 - 6xy - 4x - 2y +v9
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2x+1\right)+8\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+8>0\forall x;y\) (do \(\left(x-3y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(y-1\right)^2\ge0\forall x;y\)
Chứng minh các biểu thức sau ko âm với mọi x,y
1/ x^2-8x+20
2/ 4x^2-12x+11
3/ x^2-x+1
4/ x^2+5y^2+2x+6y+34
5/ x^2-2x+y^2+4y+6
6/ 15x-1^2+3(7x+3)(x+1)-(x^2-73)
7/ 5x^2+10y-6xy-4x-2y+9
8/ 5x^2+y^2-4xy-2y+8x+2013
Mình trù ai giúp mình bài này đc điểm cao tất cả các môn trong kì thi giữa kì sắp tới, gấp!
Mấy bạn bị lms í=)) dễ v cũng ko biết làm
Mình chỉ đăng lên để thử xem coi ai làm đc ko chứ mình cx ko biết làm. Ai jup mình vớiiiiii
Chứng tỏ biểu thức sau luôn dương với mọi số thực x,y: M= 5x2+2y2+4xy-2x+4y+6
\(M=5x^2+2y^2+4xy-2x+4y+6\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)
Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)
\(\Rightarrow M\ge1>0\forall x;y\)
\(\left(đpcm\right)\)
chứng minh các biểu thức sau không âm với mọi x, y
x2 - 8x + 20
x2 + 5y2 + 2x + 6y + 34
x2 - 8x + 20
= x2 - 8x + 20
= ( x2 - 8x + 16 ) + 4
= ( x - 4 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
x2 + 5y2 + 2x + 6y + 34
x2 + 5y2 + 2x + 6y + 34
= ( x2 + 2x + 1 ) + ( 5y2 + 6y + 9/5 ) + 156/5
= ( x + 1 )2 + 5( y2 + 6/5y + 9/25 ) + 156/5
= ( x + 1 )2 + 5( y + 3/5 )2 + 156/5 ≥ 156/5 > 0 ∀ x, y ( đpcm )
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
chứng minh 5x^2 +2y^2 +4xy - 4x -y +5 >0 với mọi x
5x^2+2y^2+4xy-4x-y+5=(4x^2+y^2+4xy)+(x^2-4x+4)+(y^2-y+1/4)+3/4 =(2x+y)^2+(x-2)^2+(y-1/2)^2+3/4 (1)
vi (2x+y)^2>=0 , (x-2)^2>=0 ,(y-1/2)^2>=0 (2)
tu 1 va 2 suy ra dieu phai chung minh