Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiếng anh123456
Xem chi tiết
Kiều Vũ Linh
13 tháng 8 2023 lúc 18:10

a) P = 5 + 5² + 5³ + ... + 5²⁰

= 5(1 + 5 + 5² + ... + 5¹⁹) ⋮ 5

Vậy P ⋮ 5

b) P = 5 + 5² + 5³ + ... + 5²⁰

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5¹⁹.(1 + 5)

= 6.(5 + 5³ + ... + 5¹⁹) ⋮ 6

Vậy P ⋮ 6

c) P = 5 + 5² + 5³ + 5⁴ + ... + 5¹⁷ + 5¹⁸ + 5¹⁹ + 5²⁰

= 5.(1 + 5 + 5² + 5³) + ... + 5¹⁷.(1 + 5 + 5² + 5³)

= 5.156 + ... + 5¹⁷.156

= 156.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷)

= 13.12.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷) ⋮ 13

Vậy P ⋮ 13

Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 18:10

a: P=5(1+5+5^2+...+5^19) chia hết cho 5

b: P=5(1+5)+5^3(1+5)+...+5^19(1+5)

=6(5+5^3+...+5^19) chia hết cho 6

c: P=5(1+5+5^2+5^3)+...+5^17(1+5+5^2+5^3)

=156(5+5^5+5^9+5^13+5^17) chia hết cho 13

Nguyễn Thành Văn
Xem chi tiết
Xyz OLM
12 tháng 10 2020 lúc 23:54

a) Ta có C = 5 + 52 + 53 + ... + 520

= 5(1 + 5 + 52 + ... + 519\(⋮\)5 (ĐPCM)

b) Ta có C = 5 + 52 + 53 + 54 + ... + 519 + 520 

                 = (5 + 52) + 52(5 + 52) + ... + 518(5 + 52)

                 = 30 + 52.30 + ... + 518.30

                 = 30(1 + 52 + ... + 518)

                 = 5.6.(1 + 52 + ... + 518)\(⋮\)6

c) Ta có C = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) +...  + (517 + 518 + 519 + 520

                = (5 + 52 + 53 + 54) + 54(5 + 52 + 53 + 54) + ... + 516(5 + 52 + 53 + 54)

                = 780 + 54.780 + .... + 516.780

               = 780(1 + 54 + ... + 516)

              = 13.60.(1 + 54 + ... + 516\(⋮\)13

Khách vãng lai đã xóa
Nguyễn Thành Văn
Xem chi tiết
Nguyen yen ngoc
Xem chi tiết
PTN (Toán Học)
12 tháng 8 2019 lúc 20:10

\(c=5+5^2+5^3+...+5^{20}\)

\(c=5.1+5.5+5.5^2+...+5.5^{19}\)

\(c=5.\left(1+5+5^2+...+5^{19}\right)\)chia hết cho 5

#Học tốt

Bùi Thị Minh Giang
Xem chi tiết
Vũ Hải Anh
Xem chi tiết
Vu Phan Ngan Ha
Xem chi tiết
Nguyễn Duẩn
Xem chi tiết
Tiến Dũng Trương
28 tháng 10 2023 lúc 15:43

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

Nguyễn Duẩn
28 tháng 10 2023 lúc 16:03

bạn Tiến Dũng Trương lm sai r

Nguyễn Thị Thương Hoài
28 tháng 10 2023 lúc 17:37

a, A = 5 + 52 + 53 + ... + 5100

    A = 5. ( 1 + 5 + ...+ 599)

    5 ⋮ 5 ⇒A =  5.(1 + 5 + ...+ 599) ⋮ 5 (1) 

A  = 5 + 52 + 53 + ... + 5100

A  = 5 + 52.( 1 + 5 + 52 + ... + 598)

A = 5 + 25 . ( 1 + 5 + 5+...+ 598)

Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25 

5 không chia hết cho 25 nên 

A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)

Kết hợp (1) và (2) ta có:

A ⋮ 5 nhưng không chia hết cho 25 (đpcm)

 

 

 

  

   

Nguyễn Hoàng Bách
Xem chi tiết
Nguyễn Minh Quang
22 tháng 10 2021 lúc 18:06

ta có :

\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+..+\left(5^{19}+5^{20}\right)\)

\(=5.6+5^3.6+5^5.6+..+5^{19}.6\)

thế nên C chia hết cho 6

Khách vãng lai đã xóa
Hoàng Minh Thành
22 tháng 10 2021 lúc 18:13

 C= 5+5^2+5^3+...+5^20. 

C=(5+5^2)+(5^3+5^4)...+(5^19+5^20)

C=30+(5^2.5+5^2.5^2)+...+(5^18.5+5^18.5^2)

C=30+5^2.30+...+5^18.30

Vì 30:6 ->30+5^2.30+...+5^18.30->C:6

Khách vãng lai đã xóa