Tìm GTLN và GTNN của hàm số:
y=x⁴-4x² trên đoạn [-2;1]
hộ cái nha:
Cho hàm số y=x^2−4x+3.Tìm GTLN,GTNN của hàm số trên đoạn [0;3].
Bài 1: Cho y=x2-4x (P)
a,Khảo sát sự biến thiên và vẽ đồ thị hàm số (P)
b,Tìm GTLN,GTNN của hàm số trên [0;4]
c,Tìm m để phương trình:x2-4x+2m=0 có 2 nghiệm phân biệt
Bài 2:Tìm m để GTNN của y=-x2+4x+m2-2m trên [-1;3] bằng 1
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
Tìm GTLN, GTNN của hàm số y=\(\sqrt{-x^2+5x-6}\) trên đoạn [-1;6]
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
2.
$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$
$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$
Vì: $0\leq \sin ^22x\leq 1$
$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$
Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$
3.
$0\leq |\sin x|\leq 1$
$\Rightarrow 3\geq 3-2|\sin x|\geq 1$
Vậy $y_{\min}=1; y_{\max}=3$
1.
\(y=\cos x+\cos (x-\frac{\pi}{3})=\cos x+\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)
\(=\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)
\(y^2=(\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x)^2\leq (\cos ^2x+\sin ^2x)(\frac{9}{4}+\frac{3}{4})\)
\(\Leftrightarrow y^2\leq 3\Rightarrow -\sqrt{3}\leq y\leq \sqrt{3}\)
Vậy $y_{\min}=-\sqrt{3}; y_{max}=\sqrt{3}$
Cho hai số x, y thỏa mãn điều kiện: (x^2 - y^2 + 1)^2 + 4x^2y^2 - x^2 - y^2 = 0. Tìm GTLN và GTNN của x^2 + y^2
Tìm GTLN và GTNN của hàm số y = x 5 - 5 x 4 + 5 x 3 + 1 trên đoạn [-1;2]
A. m i n x ∈ [ - 1 ; 2 ] y = - 10 , m a x x ∈ [ - 1 ; 2 ] y = 2
B. m i n x ∈ [ - 1 ; 2 ] y = - 2 , m a x x ∈ [ - 1 ; 2 ] y = 10
C. m i n x ∈ [ - 1 ; 2 ] y = - 10 , m a x x ∈ [ - 1 ; 2 ] y = - 2
D. m i n x ∈ [ - 1 ; 2 ] y = - 7 , m a x x ∈ [ - 1 ; 2 ] y = 1
Đáp án A
Ta có: y’ = y ’ = 5 x 4 - 20 x 3 + 15 x 2
Ta có bảng biến thiên :
=> y’ = 0 ⇔ x = 0 (tm) hoặc x = 1(tm) hoặc x = 3 (không tm)
Vậy giá trị lớn nhất, nhỏ nhất của hàm trên [-1;2] lần lượt là 2 và -10
Cho hàm số y= sin² x+ 2. Tìm GTLN, GTNN của hàm số
\(0\le sin^2x\le1\)
\(\Rightarrow2\le y\le3\)
\(y_{min}=2\) khi \(sinx=0\Rightarrow x=k\pi\)
\(y_{max}=3\) khi \(sin^2x=1\Leftrightarrow x=\frac{\pi}{2}+k\pi\)
cho 2 số x, y thỏa mãn điều kiện (x^2-y^2+1)+4x^2y^2-x^2-y^2=0. Tìm GTLN và GTNN của biểu thức x^2+y^2