\(y=\frac{\left(m+1\right)x-2m+3}{\left(m-1\right)x+2}\) có TCN y=2 thì m thuộc khoảng nào
A. (0;3)
B. (1;4)
C. (-4;0)
D. (2;5)
1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
Tìm m để: Điểm \(A\left(2;-3\right)\) thuộc đường thẳng \(\left(m-1\right)x+\left(m+1\right)y=2m+1\).
A(2;-3) => x = 2; y = -3
Thay x = 2 và y = -3 ta có:
\(\left(m-1\right).2+\left(m+1\right).\left(-3\right)=2m+1\\ \Leftrightarrow2m-2-3m-3=2m+1\\ \Leftrightarrow-m-5=2m+1\\ \Leftrightarrow3m=6\\ \Leftrightarrow m=2\)
Vậy m = 2
Tìm m để: Điểm \(A\left(2;-3\right)\) thuộc đường thẳng \(\left(m-1\right)x+\left(m+1\right)y=2m+1\).
Lời giải:
Để điểm $A(2,-3)$ thuộc đt đã cho thì:
$(m-1)x_A+(m+1)y_A=2m+1$
$\Leftrightarrow (m-1).2+(m+1)(-3)=2m+1$
$\Leftrightarrow 2m-2-3m-3=2m+1$
$\Leftrightarrow -m-5=2m+1$
$\Leftrightarrow -6=3m$
$\Leftrightarrow m=-2$
1.tìm m để phương trình \(x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(x\ne0\right)\) có nghiệm
2. cho hàm số y=f(x)=\(x^2-4x+3\)
tìmcác giá trị nguyên của m để
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)
\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)
\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)
\(2.\) \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)
\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)
\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)
\(\Rightarrow m=\left\{1;2;3\right\}\)
\(hpt:\hept{\begin{cases}3x+2y=-8\\-3x+\left(m+5\right)y=\left(m-1\right)\left(m+1\right)\end{cases}}\)
từ pt 1 \(\Rightarrow y=\frac{-8-3x}{2}\)(3)
thay (3) vào pt 2 ta được
\(-3mx+\left(m+5\right)\left(\frac{-8-3x}{2}\right)=\left(m-1\right)\left(m+1\right)\)
\(\Leftrightarrow-6mx-8m-40-15x-3mx=2\left(m^2-1\right)\)
\(\Leftrightarrow-9mx-15x=2m^2-2+40+8m\)
\(\Leftrightarrow x\left(-9m-15\right)=2m^2+8m+38\)(*)
để hệ phương trình có No duy nhất thì -9m-15\(\ne\)0 \(\Leftrightarrow m\ne\frac{-15}{9}\)
khi đó pt * có No: \(x=-\frac{2m^2+8m+38}{9m+15}\)
với \(x=-\frac{2m^2+8m+38}{9m+15}\)thì \(y=\left(-8+\frac{3\left(2m^2+8m+38\right)}{9m+15}\right):2=\frac{-8\left(9m+15\right)+3\left(2m^2+8m+38\right)}{9m+15}.\frac{1}{2}\)
\(=\frac{-72m-120+6m^2+24m+114}{9m+15}.\frac{1}{2}=\frac{6m^2-48m-6}{9m+15}.\frac{1}{2}=\frac{2\left(3m^2-24m-3\right)}{9m+15}.\frac{1}{2}=\frac{3m^2-24m-3}{9m+15}\)
7. Chứng minh biểu thức sau xác định với mọi giá trị của x:
A = \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\)
10. Cho phương trình ẩn y:
\(\frac{m}{y+m}+\frac{y}{y+2m}=\frac{3}{\left(y+m\right)\left(y+2m\right)}+1\)
a) Giải phương trình với m = 1
b) Tìm các giá trị của tham số m để phương trình có nghiệm y = 0
\(7.\) Xét mẫu thức \(\left(x^2+1\right)\left(x^2+4x+5\right)\), ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
\(x^2+4x+5\\ hayx^2+4x+4+1=\left(x+2\right)^2+1\\ \left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\)
\(\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
Vậy biểu thức \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\) luôn xác định với mọi giá trị \(x\)
(4) cmr: pt sau luôn có nghiệm ∀m
a) \(x^2+2\left(m-1\right)x-2m-3=0\)
b) \(x^2+\left(2m-1\right)x+2m-2=0\)
c) \(x^2-2\left(m+1\right)+2m-2=0\)
d) \(x^2-2\left(m+1\right)x+2m=0\)
e) \(x^2-2mx+m-7=0\)
f) \(x^2-2\left(m-1\right)x-3-m=0\)
giúp mk vs ạ mk cần gấp
\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)
1. Cho hàm số \(y=x^3-3mx^2+3\left(2m-1\right)x+1\) . Với giá trị nào của m thì \(f'\left(x\right)-6x>0\) với mọi x>2
A. m > 1/2 B. m < -1/2 C. m >1 D. m ≤ 0
2. Cho hai hàm số f(x) và g(x) đều có đạo hàm trên R và thỏa mãn :
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) với mọi x thuộc R.
Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
3. Biết hàm số f(x) - f(2x) có đạo hàm bằng 18 tại x=1 và đạo hàm bằng 2000 tại x=2. Tính đạo hàm của hàm số f(x) - f(4x) tại x=1
1.
\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)
\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)
\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)
Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:
\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)
Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)
Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)
2.
Thay \(x=0\) vào giả thiết:
\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế giả thiết:
\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)
Thế \(x=0\) vào (1) ta được:
\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)
Với \(f\left(2\right)=0\) thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)
\(\Rightarrow f\left(2\right)=2\)
Thế vào (2):
\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1\)
3.
Đặt \(g\left(x\right)=f\left(x\right)-f\left(2x\right)\)
\(\Rightarrow g'\left(x\right)=f'\left(x\right)-2f'\left(2x\right)\)
Thay \(x=1\Rightarrow18=f'\left(1\right)-2f'\left(2\right)\) (1)
Thay \(x=2\Rightarrow2000=f'\left(2\right)-2f'\left(4\right)\Rightarrow4000=2f'\left(2\right)-4f'\left(4\right)\) (2)
Cộng vế (1) và (2):
\(f'\left(1\right)-4f'\left(4\right)=4018\)
Đặt \(h\left(x\right)=f\left(x\right)-f\left(4x\right)\Rightarrow h'\left(x\right)=f'\left(x\right)-4f'\left(4x\right)\)
Thay \(x=1\Rightarrow h'\left(1\right)=f'\left(1\right)-4f'\left(4\right)=4018\)
Định m để HPT có nghiêm
1.\(\hept{\begin{cases}m\left(m-1\right)x+m\left(m+1\right)y=m^3+2\\\left(m^2-1\right)x+\left(m^3+1\right)y=m^4-1\end{cases}}\)
2.\(\hept{\begin{cases}\left(m+3\right)x+\left(m-3\right)y=2m\\\left(m^2+9\right)+\left(m^2-9\right)y=2m^2\end{cases}}\)
Mình cần gấp lắm!!!Cứu với