Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Bảo Hà Đình
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 18:37

\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\) là nghịch đảo của \(\sqrt{2021}+\sqrt{2020}\) (đpcm)

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 22:35

\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)

\(=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\)(đpcm)

kudo shinichi
Xem chi tiết
Edogawa Conan
21 tháng 10 2020 lúc 20:44

Ta có: \(\sqrt{2021}-\sqrt{2020}=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}=\frac{1}{\sqrt{2021}+\sqrt{2020}}\)

\(\sqrt{2020}-\sqrt{2019}=\frac{\left(\sqrt{2020}+\sqrt{2019}\right)\left(\sqrt{2020}-\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

Do \(\frac{1}{\sqrt{2021}+\sqrt{2020}}< \frac{1}{\sqrt{2020}+\sqrt{2019}}\) => \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)

Khách vãng lai đã xóa
Gia Bảo Hà Đình
Xem chi tiết
Achana
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 5 2021 lúc 9:23

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...

 

Không Cần Tên
Xem chi tiết
Miinhhoa
10 tháng 8 2020 lúc 16:23

1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)

\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)

Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)

từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )

Vậy...

2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)

Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )

\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)

\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)

\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)

( cộng cả hai vế với -4040)

\(\Leftrightarrow2.2019< 4040\)

\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)

\(\Leftrightarrow2019< 2020\) ( luôn đúng )

=> điều giả sử đúng

Vậy....

4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)

theo ss phân số có cùng tử

Vậy....

phần 5 làm tương tự như phần 4 nhé

Nguyễn Tuấn Anh
Xem chi tiết
이은시
Xem chi tiết
Nguyễn Ngọc Lộc
5 tháng 4 2020 lúc 17:05

Ta có : VT2 = \(\sqrt{2019}^2+2\sqrt{2019.2021}+\sqrt{2021}^2\)

\(=2.2020+2\sqrt{\left(2020-1\right).\left(2020+1\right)}\)

\(=2.2020+2\sqrt{2020^2-1}\)

Ta thấy : \(2\sqrt{2020^2-1}< 2.2020\)

=> \(2.2020+2\sqrt{2020^2-1}< 4.2020\)

=> \(2.2020+2\sqrt{2020^2-1}< \left(2\sqrt{2020}\right)^2\)

-> \(\sqrt{VT^2}< \sqrt{\left(2\sqrt{2020}\right)^2}\)

-> \(VT< 2\sqrt{2020}\)

Vậy \(2\sqrt{2020}>\sqrt{2019}+\sqrt{2021}\)

Khách vãng lai đã xóa
Nguyễn Bá Hùng
Xem chi tiết
Thắng Nguyễn
1 tháng 2 2020 lúc 21:44

xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa 

Khách vãng lai đã xóa
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 20:49

ĐKXĐ: \(2019\le x\le2020\)

\(VT=\sqrt{x-2019}+\sqrt{2021-x}\le\sqrt{2\left(x-2019+2021-x\right)}=2\)

\(VP=\left(x-2020\right)^2+2\ge2\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2019=2021-x\\x-2020=0\end{matrix}\right.\) \(\Leftrightarrow x=2020\)