Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)
\(=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)
\(\sqrt{2021}-\sqrt{2020}=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\frac{2021-2020}{\sqrt{2021}+\sqrt{2020}}=\frac{1}{\sqrt{2021}+\sqrt{2020}}\)
Vì \(\sqrt{2020}+\sqrt{2019}< \sqrt{2021}+\sqrt{2020}\)
\(\Rightarrow\) \(\frac{1}{\sqrt{2020}+\sqrt{2019}}>\frac{1}{\sqrt{2021}+\sqrt{2020}}\)
Hay \(\sqrt{2020}-\sqrt{2019}>\sqrt{2021}-\sqrt{2020}\)
Chúc bn học tốt!