viết phương trình đường thẳng y=ax+3 biết đường thẳng đi qua A(-1;1)
Viết phương trình đường thẳng y=ax+b biết đường thẳng đi qua A(-1;2) và vuông góc với đường thẳng x+2y-1=0
\(y=ax+b\left(d\right);y=-\dfrac{1}{2}x+\dfrac{1}{2}\left(d'\right)\)
\(\left(d\right)\perp\left(d'\right)\Leftrightarrow-\dfrac{1}{2}a=-1\Leftrightarrow a=2\Rightarrow y=2x+b\left(d\right)\)
Lại có \(\left(d\right)\) đi qua \(A\left(-1;2\right)\Rightarrow2=-2+b\Rightarrow b=4\)
\(\Rightarrow y=2x+4\left(d\right)\)
Viết phương trình đường thẳng y = ax + b biết nó đi qua điểm A( -1; 2) và có tung độ gốc bằng 3
Lời giải:
ĐTHS đi qua $A(-1;2)$ nên $y_A=ax_A+b$ hay $2=-a+b(1)$
ĐTHS có tung độ gốc là $3$ tức là nó đi qua $(0,3)$
$\Rightarrow 3=a.0+b(2)$
Từ $(1);(2)\Rightarrow b=3; a=1$
Vậy ptđt cần tìm là $y=x+3$
$
Viết phương trình đường thẳng (d) : y = ax + b song song (D) : y = 4x - 3 và đi qua A (-1; 2)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4;b\ne-3\\-a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=6\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=4x+6\)
Viết phương trình đường thẳng y = ax+b biết nó đi qua hai điểm A(2:5), B(3:9). Tính diện tích tam giác được tạo bởi đường thẳng và hai trục tọa độ
có còn hơn ko,ko còn hơn có =)
Cho A(1;2),B(0;1),C(-1;0),D(3;2) trên hệ trục tọa độ Oxy.
a)Viết phương trình đường thẳng y=ax+b đi qua điểm A,B
b) Chứng minh rằng 3 điểm A,B,C thẳng hàng.
HD: Cách 1: Đường thẳng đi qua B,C là y=x+1
Cách 2: Cm: C thuộc đường thẳng y=x+1
c) Điểm D có thuộc đường thẳng AB hay không?
d) Viết phương trình đường thẳng d đi qua điểm D và vuông góc với đường thẳng AB.
a: Thay x=1 và y=2 vào y=ax+b, ta được:
\(a\cdot1+b=2\)
=>a+b=2
Thay x=0 và y=1 vào y=ax+b, ta được:
\(a\cdot0+b=1\)
=>b=1
a+b=2
=>a=2-b
=>a=2-1=1
Vậy: phương trình đường thẳng AB là y=x+1
b: Thay x=-1 vào y=x+1, ta được:
\(y=-1+1=0=y_C\)
vậy: C(-1;0) thuộc đường thẳng y=x+1
hay A,B,C thẳng hàng
c: Thay x=3 và y=2 vào y=x+1, ta được:
\(3+1=2\)
=>4=2(sai)
=>D(3;2) không thuộc đường thẳng AB
d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)
Vì (d) vuông góc với AB nên \(a\cdot1=-1\)
=>a=-1
=>y=-x+b
Thay x=3 và y=2 vào y=-x+b, ta được:
b-3=2
=>b=5
vậy: (d): y=-x+5
a) Lập phương trình đường thẳng (d) : y=ax+b, biết (d) đi qua M (-1;2) và song song với đường thẳng (Δ) : y=5x+1
bạn xem lại lớp nhé
(d) // đt (delta) <=> \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)
=> (d) : y = 5x + b
(d) đi qua M(-1;2) <=> 2 = -5 + b <=> b = 7 (tm)
Vậy (d) : y = 5x + 7
Xác định phương trình của đường thẳng (d):y=ax+b biết đường thẳng (d) đi qua điểm A(-1;2) và điểm B(3; -2).
Bài 3. (2 điểm). Viết phương trình y=ax+b của đường thẳng đi qua hai điểm A(1;-2) và B(2; 3).
Viết phương trình y = ax + b của đường thẳng: Đi qua hai điểm A(4;3), B(2 ; -1)
+ A (4; 3) thuộc đường thẳng y = ax + b ⇒ 3 = 4.a + b (1)
+ B (2; –1) thuộc đường thẳng y = ax + b ⇒ –1 = 2.a + b (2)
Lấy (1) trừ (2) ta được: 3 – (–1) = (4a + b) – (2a + b)
⇒ 4 = 2a ⇒ a = 2 ⇒ b = –5.
Vậy đường thẳng đi qua hai điểm A(4;3), B(2 ; –1) là y = 2x – 5.