Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 19:34

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(-1\le x\le1\)

c: ĐKXĐ: \(x\le-2\)

Nhan Thanh
4 tháng 9 2021 lúc 19:39

a. \(\sqrt{\left(x-2\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-6\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge6\end{matrix}\right.\) \(\Leftrightarrow x\ge6\)

b. \(\sqrt{1-x^2}\) có nghĩa \(\Leftrightarrow1-x^2\ge0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow-1\le x\le1\)

\(\sqrt{-5x-10}\) có nghĩa \(\Leftrightarrow-5x-10\ge0\Leftrightarrow-5x\ge10\Leftrightarrow x\ge-2\)

Pose Black
Xem chi tiết
HT.Phong (9A5)
17 tháng 6 2023 lúc 16:20

c) Ta có: \(\sqrt{x^2-3}\)

Có nghĩa khi: \(x^2-3\ge0\)

\(\Leftrightarrow x^2\ge3\)

\(\Leftrightarrow x\ge\sqrt{3}\)

e)  Ta có: \(\sqrt{x\left(x+2\right)}\)

Có nghĩa khi: \(x\left(x+2\right)\ge0\)

\(\Leftrightarrow x\ge-2\)

33. Nguyễn Minh Ngọc
Xem chi tiết
Hoàng Như Quỳnh
4 tháng 7 2021 lúc 16:08

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\ge0\)

\(< =>TH1:3-5x\ge0;x-6\ge0\)

\(\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}}\)pt vô nghiệm

\(TH2:3-5x< 0;x-6< 0\)

\(\hept{\begin{cases}3-5x< 0\\x-6< 0\end{cases}\hept{\begin{cases}x>\frac{3}{5}\\x< 6\end{cases}}}\)

để căn thức đxđ thì\(\frac{3}{5}< x< 6\)

Khách vãng lai đã xóa

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left(3-5x\right)\left(x-5\right)\ge0\)

                                                             \(\Leftrightarrow\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-5x\le0\\x-6\le0\end{cases}}\)

                                                             \(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}\)(vô lí)           Hoặc \(\hept{\begin{cases}x\ge\frac{3}{5}\\x\le6\end{cases}}\)

                                                             \(\Leftrightarrow\frac{3}{5}\le x\le6\)

Khách vãng lai đã xóa
Phùng Phạm Quỳnh Trang
Xem chi tiết
Dora
9 tháng 9 2023 lúc 21:35

Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)

      \(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)

       `<=>x > 2`

tueanh2k3
9 tháng 9 2023 lúc 21:13

hmmm....đợi cô nghĩ chút<)

 

bad end night
Xem chi tiết
Nguyễn Nhã Thanh
Xem chi tiết
o0o I am a studious pers...
3 tháng 7 2017 lúc 21:56

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

s2 Lắc Lư  s2
3 tháng 7 2017 lúc 21:57

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà

Nguyễn Nhã Thanh
3 tháng 7 2017 lúc 21:58

mình kh biết cách giải

nguyen thi mai anh
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 16:13

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Nguyễn Nhã Thanh
Xem chi tiết
Iron Fe
Xem chi tiết
HT.Phong (9A5)
17 tháng 9 2023 lúc 9:37

a) Ta có: 

\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:

\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)

b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)

\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)

\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)

\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)

\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)

\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)

Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{12}=0\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)

nini
Xem chi tiết
HT.Phong (9A5)
7 tháng 8 2023 lúc 10:31

\(\sqrt{\dfrac{1}{-1+x}}=\sqrt{\dfrac{1}{x-1}}\) có nghĩa khi:

\(\left\{{}\begin{matrix}\dfrac{1}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

\(ĐKXĐ:\dfrac{1}{-1+1x}>0\Leftrightarrow-1+1x< 0\\ \Leftrightarrow x< -1\)