Rút gọn:
a) \(\frac{2}{4-3\sqrt{2}}-\frac{2}{4+3\sqrt{2}}\)
b)\(\sqrt{2x}-\sqrt{50}=0\)
Rút Gọn:A=\(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
B=\(\frac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
C=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Rút gọn:
A = \(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}+\sqrt{13-4\sqrt{3}}-\sqrt{22+12\sqrt{2}}\)
\(A=\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}+\sqrt{13-4\sqrt{3}}-\sqrt{22+12\sqrt{2}}\)
\(=\left|2\sqrt{3}-3\sqrt{2}\right|+\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+\sqrt{1^2}}-\sqrt{\left(3\sqrt{2}\right)^2+2.2.3\sqrt{2}+2^2}\)
\(=-2\sqrt{3}+3\sqrt{2}+\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(3\sqrt{2}+2\right)^2}\)
\(=-2\sqrt{3}+3\sqrt{2}+\left|2\sqrt{3}-1\right|-\left|3\sqrt{2}+2\right|\)
\(=-2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-1-3\sqrt{2}-2\)
\(=-3\)
\(A=3\sqrt{2}-2\sqrt{3}+2\sqrt{3}-1-3\sqrt{2}-2=-3\)
Giải các phương trinh sau
a. \(\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\) b.\(\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
c\(\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}=4}\)
d. \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
e. \(\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
Đề câu c ptrinh = 4 là phải riêng ra chứ
\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)
\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)
\(\Rightarrow3x+2=2\left(x+2\right)\)
\(\Rightarrow3x+2=2x+4\)
\(\Rightarrow3x-2x=4-2\)
\(\Rightarrow x=2\)
\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)
\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Rightarrow2\sqrt{x-2}=4\)
\(\Rightarrow\sqrt{x-2}=2\)
\(\Rightarrow x-2=4\)
\(\Rightarrow x=6\)
\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)
\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)
\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)
\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)
\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)
\(\Rightarrow2x^2+7x=0\)
\(\Rightarrow x\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)
\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)
\(\Rightarrow x=1\)
b) \(\sqrt{2x+1}.\sqrt{2x-1}-2\sqrt{2x+1}=0\)đkxđ: x>= 1/2
<=> \(\sqrt{2x+1}.\left(\sqrt{2x-1}-2\right)=0\)
<=> \(\sqrt{2x-1}-2=0\)
<=> \(\sqrt{2x-1}=2\)
<=> \(2x-1=4\)
<=> x=5/2 ( tm đkxđ)
Vậy x=5/2
Rút gọn:
A=\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
B=\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)
\(B=\sqrt{5}+2+\sqrt{5}-2\)
\(B=2\sqrt{5}\)
\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)
\(A=-1\)
Rút gọn:
A= \(\sqrt{6-2\sqrt{5}}\) C= \(\sqrt{19-8\sqrt{3}}\)
B = \(\sqrt{4-\sqrt{12}}\) D= \(\sqrt{5-2\sqrt{6}}\)
`A=\sqrt{6-2\sqrt{5}}`
`A=\sqrt{(\sqrt{5}-1)^2}`
`A=\sqrt{5}-1`
_________
`B=\sqrt{4-\sqrt{12}}=\sqrt{4-2\sqrt{3}}`
`B=\sqrt{(\sqrt{3}-1)^2}`
`B=\sqrt{3}-1`
_________
`C=\sqrt{19-8\sqrt{3}}`
`C=\sqrt{(4-\sqrt{3})^2}`
`C=4-\sqrt{3}`
_________
`D=\sqrt{5-2\sqrt{6}}`
`D=\sqrt{(\sqrt{3}-\sqrt{2})^2}`
`D=\sqrt{3}-\sqrt{2}`
\(A=\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5}^2-2\sqrt{5}+1^2}=\sqrt{ \left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(B=\sqrt{4-\sqrt{12}}=\sqrt{4-\sqrt{4.3}}=\sqrt{4-2\sqrt{3}}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(C=\sqrt{19-8\sqrt{3}}=\sqrt{19-2.4.\sqrt{3}}\sqrt{\sqrt{3}^2-2.4.\sqrt{3}+4^2}=\sqrt{\left(\sqrt{3}-4\right)^2}=\sqrt{3}-4\)
\(D=\sqrt{5-2\sqrt{6}}=\sqrt{5-2.\sqrt{2}.\sqrt{3}}=\sqrt{\sqrt{3}^2-2.\sqrt{2}.\sqrt{3}+\sqrt{2^2}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
Rút gọn:
A= \(\dfrac{10\sqrt{x}}{x+3\sqrt{x}-4}\) - \(\dfrac{2\sqrt{x}-3}{\sqrt{x}+4}\) + \(\dfrac{\sqrt{x}+1}{1-\sqrt{x}}\) ( với x ≥ 0; x ≠ 1)
Với `x >= 0,x ne 1` có:
`A=[10\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+4)]-[2\sqrt{x}-3]/[\sqrt{x}+4]-[\sqrt{x}+1]/[\sqrt{x}-1]`
`A=[10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3x+10\sqrt{x}-7]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[(\sqrt{x}-1)(-3\sqrt{x}-7)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3\sqrt{x}-7]/[\sqrt{x}+4]`
Rút gọn:
a)\(\sqrt{b^2-b+\frac{1}{4}}-\left(2b-\frac{1}{2}\right)vsb>=\frac{1}{2}\)
b)\(\frac{4x-5}{2\sqrt{x}-\sqrt{5}}vsx>0,xkhác\frac{5}{4}\)
c)\(\frac{\sqrt{x^2-2x+1}}{x-2}vsxkhác1\)
d) \(\frac{3-4x^2}{3+2x\sqrt{3}}vsxkhác\frac{-\sqrt{3}}{2}\)
Các bạn giúp mk nhé!!!
giúp vs
1)a) n thuộc N*: rút gọn:
K = \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}\)
b) tính
I = \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}+\sqrt{1+\frac{1}{2016^2}+\frac{1}{2017^2}}\)2) A= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm x đề A=1
3) rút gọn B = \(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
4) tính: \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
C= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
1.Rút gọn và thay số tính giá trị biểu thức:
D=\(\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
E=\(\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2},x=2\left(\sqrt{3+1}\right)\)
2.giải phương trình:
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
Giúp mik với, làm đc bài nào thì làm nha ạ, mik đg cần gấp ><! Thanks!
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.