\(A=\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}+\sqrt{13-4\sqrt{3}}-\sqrt{22+12\sqrt{2}}\)
\(=\left|2\sqrt{3}-3\sqrt{2}\right|+\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+\sqrt{1^2}}-\sqrt{\left(3\sqrt{2}\right)^2+2.2.3\sqrt{2}+2^2}\)
\(=-2\sqrt{3}+3\sqrt{2}+\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(3\sqrt{2}+2\right)^2}\)
\(=-2\sqrt{3}+3\sqrt{2}+\left|2\sqrt{3}-1\right|-\left|3\sqrt{2}+2\right|\)
\(=-2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-1-3\sqrt{2}-2\)
\(=-3\)
\(A=3\sqrt{2}-2\sqrt{3}+2\sqrt{3}-1-3\sqrt{2}-2=-3\)