(-6x+1)(x+5)+6x^2
Cứu emmmm!
|x+2|-6x=1
=> |x+2|=6x+1
=> |x+2| ≥0 với mọi x
=> 6x+1≥0
=> 6x ≥-1
=> x≥-1/6
Khi đó |x+2|=6x+1
x+2=6x+1 hoặc x+2=-(x-1)
x-6x=1-2 hoặc x+2=-6x-1
-5x=-1 hoặc x+6x=-2 - 1
x=1/5 hoặc 7x =-3
x=1/5 ( nhận ) hoặc x=-3/7 ( loại )
Vậy x=1/5
CÁC BẠN GIẢNG LẠI CHO MK BÀI NÀY VỚI MK KHONG HIỂU GÌ CẢ ! MAI MK CÓ KIỂM TRA RỒI ! GIÚP MK VỚI !
Đầu tiên là tính chất cơ bản của trị tuyệt đối: \(\left|A\right|\ge0\) với A là một biểu thức bất kì
Cho nên, để pt \(\left|A\right|=a\) có nghiệm thì điều kiện ban đầu là \(a\ge0\)
Ví dụ như sau:
\(\left|x+1\right|=1\)
Ta thấy \(1>0\) nên pt này có nghiệm
Còn pt: \(\left|x+1\right|=-1\)
Thì \(-1< 0\) nên pt này vô nghiệm
Do đó, ở 1 pt nếu 1 vế là trị tuyệt đối, 1 vế là biểu thức theo x thì đầu tiên ta phải tìm điều kiện cho biểu thức vế phải không âm
Ví dụ:
\(\left|3x+2\right|=2x-1\)
Thì đầu tiên phải tìm điều kiện để vế phải ko âm, nghĩa là:
\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
Xong bước tìm điều kiện, giờ đến giải pt
//
Phương trình trị tuyệt đối có dạng: \(\left|A\right|=a\) (với \(a\ge0\)) thì ta suy ra:
\(\left[{}\begin{matrix}A=a\\A=-a\end{matrix}\right.\)
Ví dụ như sau:
\(\left|2x+3\right|=1\Rightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\) sau đó giải pt bình thường
Nếu vế phải là biểu thức của x thì cũng làm y hệt thôi, ví dụ như sau:
\(\left|3x+2\right|=2x-1\)
Sau khi đã xong bước tìm điều kiện bên trên, pt trở thành:
\(\Rightarrow\left[{}\begin{matrix}3x+2=2x-1\\3x+2=-\left(2x-1\right)\end{matrix}\right.\)
Và giải bình thường.
Sau khi giải xong, nhớ đối chiếu nghiệm tìm được với điều kiện ban đầu, nếu thỏa mãn thì nhận, còn ko thì phải loại.
Ví dụ 1 bài toán đầy đủ:
\(\left|5x-3\right|-2x+5=0\)
\(\Leftrightarrow\left|5x-3\right|=2x-5\) (đầu tiên, biến đổi về dạng \(\left|A\right|=a\))
Do \(\left|5x-3\right|\ge0\Rightarrow2x-5\ge0\Rightarrow x\ge\frac{5}{2}\) (tìm điều kiện cho vế phải)
Khi đó:
\(\left|5x-3\right|=2x-5\)
\(\Rightarrow\left[{}\begin{matrix}5x-3=2x-5\\5x-3=-\left(2x-5\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=-2\\7x=8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{2}{3}< \frac{5}{2}\\x=\frac{8}{7}< \frac{5}{2}\end{matrix}\right.\)
2 nghiệm vừa tìm được đều nhỏ hơn \(\frac{5}{2}\) (không thỏa mãn) nên pt vô nghiệm
`x^13 -6x^2 +6x^11 -6x^10 + ... - 6x^2 +6x-5` với x=5
Sửa đề: \(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
x=5 nên x+1=6
\(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-x\)
\(=x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-x\)
=0
a)(6x mũ 2+13x-5)
b)(6x+1)mũ 2 + (6x-1)mũ 2-2(1+6x)(6x-1)
c)Chứng minh:x mũ 2-2x +3 ≥ 2 với mọi số thực x
Bài 1. Thu gọn:
a) x2 – 4 – (x + 2)2 | b) (x + 2)(x – 2) – (x – 3)(x + 1) |
c) (x – 2)(x + 2) – (x – 2)(x + 5) | d) (6x + 1)2 + (6x – 1)2 – 2(6x + 1)(6x – 1) |
e) 7a(3a – 5) + (2a -3)(4a + 1) – (6a – 2)2 | g) (5y – 3)(5y + 3) – (5y – 4)2 |
h) (3x + 1)3 – (1 – 2x)3 | i) (2x + 1)2 + 2(4x2 – 1) + (2x – 1)2 |
a: Ta có: \(x^2-4-\left(x+2\right)^2\)
\(=x^2-4-x^2-4x-4\)
=-4x-8
b: Ta có: \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-x^2+2x+3\)
=2x-1
c: ta có: \(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)\)
\(=\left(x-2\right)\left(x+2-x-5\right)\)
\(=-3x+6\)
d: Ta có: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
=4
e: ta có: \(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-\left(36a^2-24a+4\right)\)
\(=29a^2-45a-3-36a^2+24a-4\)
\(=-7a^2-21a-7\)
g: ta có: \(\left(5y-3\right)\left(5y+3\right)-\left(5y-4\right)^2\)
\(=25y^2-9-25y^2+40y-16\)
=40y-25
h: Ta có: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=27x^3+27x^2+9x+1-1+6x-12x^2+8x^3\)
\(=35x^3+15x^2+15x\)
i: Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=16x^2\)
Thực hiện phép tính: (Cíu emmmm)
2x / x^2 - 25 - 1 / x - 5 + 1 / x + 5
\(=\dfrac{2x-x-5+x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{2}{x+5}\)
cho \(g\left(x\right)=x^6-6x^5+6x^4-6x^3+6x^2-6x+1\)\(1\) tính \(g\left(1\right)\)
g(1)=16 - 6 x 15 + 6 x 14 - 6 x 13+ 6 x 12 - 6 x 1 +11
= 1 - 6 + 6 - 6 + 6 - 6 + 11
= 6
Phân tích đa thức thành nhân tử:
1) x^4 + 6x^3 + 7x^2 - 6x +1
2) 2(6x + 1)^2 + (6x+1)( 5x^2 + 5)+ 2(x^2 + 1)^2
rút gọn biểu thức:
a) (6x + 1)2 (6x - 1)2 - 2 (1 + 6x). (6x - 1)
b) (2x - 3) . (2x + 3) - (x + 5)2 - (x - 1) . (x + 2)
a)\(\left(6x+1\right)^2+\left(6x+1\right)^2-2\left(1-6x\right)\left(6x-1\right)\)
\(\Leftrightarrow36x^2+1+36x^2+1-2\left(36x^2-1\right)\)
\(\Leftrightarrow1+1+2=4\)
b) \(\Leftrightarrow4x^2-9-\left(x^2+10x+25\right)-\left(x^2+x-2\right)\)
\(\Leftrightarrow2x^2-11x-32\)
(x-2)^3-x(x+1)(x-1)+6x^2=5 (x-2)^3-(x+5)(x^2-5x+25)+6x^2=11
a: Ta có: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2=5\)
\(\Leftrightarrow13x=13\)
hay x=1