Viết dưới dạng tổng các bình phương:
a. 10x^2+40x+50
b. 16x^2+5+8x-4y+y^2
c. 2x^2-2y^2+4x-4y-4xy
viết cácđa thức sau dưới dạng bình phương của 1 tổng:
a) A= 4x2+ y2 +4xy- 8x-4y+4
b) B= x2- 4xy+2x-4y+4y2+1
c) C= 10x4+ 32x3+24x2+8x+1
a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4
b,B= (x-2y+1)^2
Viết biểu thức sau dưới dạng tổng của hai bình phương:
a. x2-2x+2+4y2+4y
b. 4x2+y2+12x+4y+13
c. x2+17+4y2+8x+4y
d. 4x2-12x+y2-4y+13
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
a: \(x^2-2x+2+4y^2+4y\)
\(=x^2-2x+1+4y^2+4y+1\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
b: \(4x^2+12x+y^2+4y+13\)
\(=4x^2+12x+9+y^2+4y+4\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
c: \(x^2+8x+4y^2+4y+17\)
\(=x^2+8x+16+4y^2+4y+1\)
\(=\left(x+4\right)^2+\left(2y+1\right)^2\)
d: \(4x^2-12x+y^2-4y+13\)
\(=4x^2-12x+9+y^2-4y+4\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
Viết các đa thức dưới sau dưới dạng bình phương của một tổng hoặc một hiệu
a) x^2 + 6x + 9
b) 25 + 10x + x^2
c) x^2 + 8x + 16
d) x^2 + 14x + 49
e) 4x^2 + 12x + 9
f) 9x^2 + 12x + 4
h) 16x^2 + 8x + 1
i) 4x^2 + 12xy + 9y^2
k) 25x^2 + 20xy + 4y^2
a. x2 + 6x + 9 = (x + 3)2
b. 25 + 10x + x2 = (5 + x)2
c. x2 + 8x + 16 = (x + 4)2
d. x2 + 14x + 49 = (x + 7)2
e. 4x2 + 12x + 9 = (2x + 3)2
f. 9x2 + 12x + 4 = (3x + 2)2
h. 16x2 + 8 + 1 = (4x + 1)2
i. 4x2 + 12xy + 9y2 = (2x + 3y)2
k. 25x2 + 20xy + 4y2 = (5x + 2y)2
a) \(=\left(x+3\right)^2\)
b) \(=\left(x+5\right)^2\)
c) \(=\left(x+4\right)^2\)
d) \(=\left(x+7\right)^2\)
e) \(=\left(2x+3\right)^2\)
f) \(=\left(3x+2\right)^2\)
h) \(=\left(4x+1\right)^2\)
i) \(=\left(2x+3y\right)^2\)
k) \(=\left(5x+2y\right)^2\)
Viết các biểu thức sau dưới dạng tổng của hai bình phương:
5)-12x+13-24y+9x^2+16y^2
6)a^2-4ab+5b^2-4bc+4c^2
7)5x^2+y^2+z^2+4xy-2xz
8)9x^2+25-12xy+2y^2-10y
9)13x^2+4x-12xy+4y^2+1
10)x^2+4y^2+4x-4y+5
11)4x^2-12x+y^2-4y+13
12)x^2+y^2+2y-6x+10
13)4x^2+9y^2-4x+6y+2
14)y^2+2y+5-12x+9x^2
15)x^2+26+6y+9y^2-10x
16)10-6x+12y+9x^2+4y^2
17)16x^2+5+8x-4y+y^2
18)x^2+9y^2+6x-12y
19)5+9x^2+9y^2+6y-12
20)x^2+20+9y^2+8x-12y
21)x^2+4y+4y^2+26-10x
22)4y^2+34-10x+12y+x^2
23)-10x+y^2-8y+x^2+41
24)x^2+9y^2-12y+29-10x5
25)9x^2+4y^2+4y-12x+5
26)4y^2-12x+12y+9x^2+13
27)4x^2+25-12x-8y+y^2
28)x^2+17+4y^2+8x+4y
29)4y^2+12y=25+8x+x^2
30)x^2+20+9y^2+8x-12y
MONG CAC BAN GIUP MINH VOI ,MINH CAN GAP ,CAM ON NHIEU
Viết các biểu thức sau dưới dạng bình phương của 1 tổng , 1 hiệu :
a) 5x^2 + y^2 + z^2 + 4xy - 2xz
b) 9x^2 + 25 - 12xy + 2y^2 - 10y
c) 13x^2 + 4x - 12xy + 4y^2 + 1
d) x^2 + 4y^2 + 4x - 4y +5
\(1,\)\(4x^2-4x+y^2+2y+2\)
\(=4x^2+4x+1+y^2+2y+1\)
\(=\left[\left(2x\right)^2-2.2x+1\right]+\left(y^2+2.y.1+1^2\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
\(2,\)\(a^2-4ab+5b^2-4bc+4c^2\)
\(=a^2-4ab+4b^2+b^2-4bc+4c^2\)
\(=\left[a^2-2.a.2b+\left(2b\right)^2\right]+\left[b^2-2.b.2c+\left(2c\right)^2\right]\)
\(=\left(a-2b\right)^2+\left(b-2c\right)^2\)
\(3,\)\(16x^2+5+8x-4y+y^2\)
\(=16x^2+8x+1+y^2-4y+4\)
\(=\left[\left(4x\right)^2+2.4x.1+1^2\right]+\left[y^2-2.y.2+2^2\right]\)
\(=\left(4x+1\right)^2+\left(y-2\right)^2\)
viết các biểu thức sau thành bình phương của một tổng và hiệu
a) 6x^2y+9+x^4y^2
b)−4xy+4x^2+y^2
c) 25y^4−10y^2+1
a) \(6x^2y+9+x^4y^2=\left(x^2y+3\right)^2\)
b) \(-4xy+4x^2+y^2=\left(2x-y\right)^2\)
c) \(25y^4-10y^2+1=\left(5y^2-1\right)^2\)
\(a,=\left(x^2y+3\right)^2\\ b,=\left(2x+y\right)^2\\ c,=\left(5y^2-1\right)^2\)
y^2-9-x^2+6x
25-4x^2-4xy-y^2
x^2-xz+4y^2-2yz+4xy
3x^2+6xy-48z^2+3y^2
x^2-z^2+4y^2-4t^2-4xy+4zt
x^3+2x^2y+xy^2-16x
viết các biểu thức sau dưới dạng bình phương của một tổng hay một hiệu:
a) (x^2+9x+18)^2+2(x^2+9x)+37
b) x^2+y^2+2x+2y+2(x+1)(y+1)+2
c) x^2-2x(y+2)+y^2+4y+4
d) x^2+2x(y+1)+y^2+2y+1
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
c) Ta có: \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2+2\cdot x\cdot\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x+y+2\right)^2\)
d) Ta có: \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)