6) (4x+1/4)^3
7) (3x+2/x)^3
8) (x^2+1/x)^3
9) (x+2/xy)^3
10) (x^2+2/xy)^3
Bài 8: Phân tích đa thức sau thành nhân tử
1)(x+y)^2-9x^2
2)(3x-1)^2-16
3)4x^2-(x^2+1)^2
4)(2x+1)^2 -(x-1)^2
5)(x+1)^4 - (x-1)^4
6)25(x-y)^2 - 16(x+y)^2
7) (x^2+xy)^2 - (y^2 + xy)^2
8)(x^2 +4y^2-20)^2 -16(xy-4)^2
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
Tìm n;x;y
1: n chia hết cho 21 và n+1 chia hết cho 165
2: 5x-xy=26-3y
3: 3x+xy-4x=3
4: y2-5y+2x=xy-6
5: y2+3x-xy=6y-4
6: xy-y2=3y-x-5
7: (2x+5y+1).(2|x|+y+x2+x)=105
Bài 2:Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
3, x(x-1)-y(1-x)
4, x^2+6x^2y+12xy^2+8y^3
5, x^2-2xy+y^2-xz+yz
6, x^2-y^2-x+y
9, x^3+x^2-xy+xy+y^2+y^3
10, x^2-6(x+3)-9
\(3,x\left(x-1\right)-y\left(1-x\right)=\left(x+y\right)\left(x-1\right)\\ 4,x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\\ 5,x^2-2xy+y^2-xz+yz=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y-z\right)\left(x-y\right)\\ 6,x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\\ 9,x^3+x^2-xy+xy+y^2+y^3\\ =x^2\left(x+1\right)+y^2\left(x+1\right)=\left(x^2+y^2\right)\left(x+1\right)\\ 10,x^2-6\left(x+3\right)-9\\ =x^2-6x-18-9\\ =x^2-6x-27=\left(x-9\right)\left(x+3\right)\)
10: \(x^2-6\left(x+3\right)-9\)
\(=x^2-6x-18-9\)
\(=x^2-6x-27\)
\(=\left(x-9\right)\left(x+3\right)\)
1) (3x-2)/3-2=(4x+1)/42) (x-3)/4+(2x-1)/3=(2-x)/63) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)4) (x+4)/5-x+4=x/3-(x-2)/25) (4-5x)/6=2(-x+1)/2 6) (-(x-3))/2-2=5(x+2)/4 7)2(2x+1)/5-(6+x)/3=(5-4x)/158) (7-3x)/2-(5+x)/5=1 9)(x-1)/2+3(x+1)/8=(11-5x)/310)(3+5x)/5-3=(9x-3)/4
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
rút gọn biểu thức:(8x^3-4x^2):4x-(4x^2-5x):(2x)+(2x)^2
(3x^3-x^2y):x^2-(xy^2+x^2y):(xy)+2x(x-1)
a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)
\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)
\(=6x^2-3x+\dfrac{5}{2}\)
b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)
\(=3x-y-y-x+2x^2-2x\)
\(=2x^2-2y\)
Thực hiện phép tính.
a.( x2-x)/xy +(1-4x)/xy
b. (5xy2-x2y)/3xy + (4xy2 +xy2)/ 3xy
c.(x+1)/ab+ (x-1)/b-a
d. (2x+4)/10+ (2-x)/15
e. (x+1)/ (2x-2)+ (x2+3)/ (2-2x2)
f. (1-2x)/2x+ 2x/ (2x-1)+ 1/ (2x-4x2)
g. x2/ (x2-4x)+ 6/ (6-3x)+ 1/(x+2)
a: \(=\dfrac{x^2-x+1-4x}{xy}=\dfrac{x^2-5x+1}{xy}\)
b: \(=\dfrac{5xy^2-x^2y+4xy^2+xy^2}{3xy}\)
\(=\dfrac{10xy^2-x^2y}{3xy}=\dfrac{xy\left(10y-x\right)}{3xy}=\dfrac{10y-x}{3}\)
d: \(\dfrac{2x+4}{10}-\dfrac{2-x}{15}\)
\(=\dfrac{x+2}{5}+\dfrac{x-2}{15}\)
\(=\dfrac{3x+6+x-2}{15}=\dfrac{4x+4}{15}\)
e: \(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
Thực hiện phép tính phân thức a) 3/2x+6-x-6/2x^2+6x
b)1/xy-x^2-1/y^2-xy
c)1-4x^2/x^2+4x : 2-4x/3x
d)12x/5y^3 . 15y^4/8x^3
e)4x^2/5y^2 : 6x/5y : 2x/3y
f) x^2-4/3x+12 . x+4/2x-4
g) 5x+10/4x-8 . 4-2x/x+2
các bn ưi, giúp mk giải hộ bài này vs, mk đag cần gấp
a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)
\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)
d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)
f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)