Tim so nguyen x biet
a) (x - 1)(x + 4) < 0
b) 5x + 2 - 5x - 1 = 3100
c) 3x + 1 - 3x - 2 = 702
Tim so nguyen x,y biet
a) (x+5) mu 2 + (2y - 8 ) mu 2 = 0
b)(x + 3).(2y - 1 ) = 5
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
TÌM X BIẾT :
a/ 3x ( 3x -1 ) - ( 3x + 1 ) ( 3x - 1 ) = 0
b/ \(x^2\) - 5x + 25 - 5x = 0
KHÔNG BỎ BƯỚC Ạ !
a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow9x^2-3x-9x^2+1=0\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)
b: Ta có: \(x^2-5x+25-5x=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
hay x=5
tim x nguyen biet:
a 8.(x mu 2 +3).(5-x)
b)(2x + 1)mu 2=25
c) (1-3x)mu3 =64
d)(4-x)mu3 =-27
e) xmu2 -5x =0
b: \(\left(2x+1\right)^2=25\)
=>\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left(1-3x\right)^3=64\)
=>\(\left(1-3x\right)^3=4^3\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1
d: \(\left(4-x\right)^3=-27\)
=>\(\left(4-x\right)^3=\left(-3\right)^3\)
=>4-x=-3
=>x=4+3=7
e: \(x^2-5x=0\)
=>\(x\left(x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
tim cac so nguyen x de cac bieu thuc sau co gia tri nguyen:
a.-24/x+18/x
b.2x-5/x+1
c.3x+2/x-1-x-5/x-1
d.5x-4/2x+3 - 2x-5/2x+3
a)\(-\frac{21}{x}+\frac{18}{x}=\frac{-21+18}{x}=\frac{-3}{x}\in Z\)
=>-3 chia hết x
=>x thuộc Ư(-3)
=>x thuộc {1;-1;3;-3}
b)\(\frac{2x-5}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=\frac{2\left(x+1\right)}{x+1}-\frac{7}{x+1}=2-\frac{7}{x+1}\in Z\)
=>7 chia hết x+1
=>x+1 thuộc Ư(7)
=>x+1 thuộc {1;-1;7;-7}
=>x thuộc {0;-2;6;-8}
c)\(\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-\left(x-5\right)}{x-1}=\frac{2x+7}{x-1}=\frac{2\left(x-1\right)+9}{x-1}=\frac{2\left(x-1\right)}{x-1}+\frac{9}{x-1}\)\(=2+\frac{9}{x-1}\in Z\)
=>9 chia hết x-1
=>x-1 thuộc Ư(9)
=>....
Còn lại bạn tự làm típ nha khi nào ko làm đc thì nhắn vs mk :)
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
`a ) 3x - 7 = 0`
`\(\Leftrightarrow \) 3x = 7`
`\(\Leftrightarrow \) x = 7/3`
Vậy `S = {-7/3}`
1) tìm x
a) (5x+1)(x-4)-x+4=0
b)2x(x-5)-x(2x+3)=26
C) (x^2-x+1)(x+1)-x^3+3x=15
d) (x^2-5)(x+2)+5x=2x^2+17
Giải giúp mik với ak đang cần gấp
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
tim x:
(x-1)(x+2)-x^2+3=5
(x-2)(3x+4)=3x(x-2)
5(x-3)+(x-2)(5x-1)=5x^2
Tuyet Anh Nguyen
1.a)(3x-2)(4x+5)=0
12x^2+7x-10=0>>x1=2/3,x2=-5/4
b)4x^3+2x^2+4x+2=0>>x=-1
c)0,23x^2-4,21x-13,8=0>>x1=21,14,x2=-2,8...
d)10x^3-13x^2-178x-35=0>>x1=5,x2=-1/5
b2/a)2x^3+5x^2-3x=0>>x1=1/2,x2=-3
b)(3x-1)(x^2-7x+12)=0>>x1=1/3,x2=4,x3=...
b3/
a)x^2+x-2=0>>x1=1,x2=-2
b)x1=-1,x2=-6
b4/a)0,5x^2-1,5x-1,5x^2+x+4,5x-3=0>>-x...
b)3x/7-1=3x/7-x>>x=1
c)2x^2-13x+15=0>>x1=5,x2=3/2
P/s: Tham khảo nha
Giải các phương trình sau
a. (2x-3)(x^2-4)=0
b. 2x-(3-5x)=4(x+3)
c. 1/x-2-2/x+1=11-3x/(x+1)(x-2)
\(a,\left(2x-3\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=-2\end{matrix}\right.\\ b,2x-\left(3-5x\right)=4\left(x+3\right)\\ \Leftrightarrow2x-3+5x=4x+12\\ \Leftrightarrow7x-3-4x-12=0\\ \Leftrightarrow3x-15=0\\ \Leftrightarrow x=5\)
\(c,ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{1}{x-2}-\dfrac{2}{x+1}=\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x+1}{\left(x-2\right)\left(x+1\right)}-\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x+1-x+2-11+3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow3x-8=0\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)
Giải phương trình: a. (x-1)^2(3x-1)=0
b. 1/x+1-5/x-2=15/(x+1)(x-2)
c. x-1/x+2-x/x-2=5x-2/x^2-4
a: =>x-1=0 hoặc 3x-1=0
=>x=1 hoặc x=1/3
b: ĐKXĐ: x<>2; x<>-1
PT =>x-2-5(x+1)=15
=>x-2-5x-5=15
=>-4x-7=15
=>-4x=22
=>x=-11/2(nhận)
c: ĐKXĐ: x<>2; x<>-2
PT =>(x-1)(x-2)-x(x+2)=5x-2
=>x^2-3x+2-x^2-2x=5x-2
=>-5x+2=5x-2
=>-10x=-4
=>x=2/5(nhận)