a) ( x - 1 )( x + 4 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-1< 0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-4\end{cases}}\Rightarrow-4< x< 1\)
2. \(\hept{\begin{cases}x-1>0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< -4\end{cases}}\)( loại )
Vậy với -4 < x < 1 thì ( x - 1 )( x + 4 ) < 0
b) 5x+2 - 5x-1 = 3100
<=> 5x( 52 - 5-1 ) = 3100
<=> 5x( 25 - 1/5 ) = 3100
<=> 5x.124/5 = 3100
<=> 5x = 125
<=> 5x = 53
<=> x = 3
c) 3x+1 - 3x-2 = 702
<=> 3x( 3 - 3-2 ) = 702
<=> 3x( 3 - 1/9 ) = 702
<=> 3x.26/9 = 702
<=> 3x = 243
<=> 3x = 35
<=> x = 5
a) (x - 1)(x + 4) < 0
Xét các trường hợp
TH1\(\hept{\begin{cases}x-1>0\\x+4< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -4\end{cases}}\left(\text{loại}\right)\)
TH2\(\hept{\begin{cases}x-1< 0\\x+4>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-4\end{cases}}\Rightarrow-4< x< 1\left(tm\right)\)
Vậy -4 < x < 1
b) 5x + 2 - 5x - 1 = 3100
=> 5x(52 - 1/5) = 3100
=> 5x.124/5 = 3100
=> 5x = 125
=> 5x = 53
=> x = 3
c) 3x + 1 - 3x - 2 = 702
=> \(3^x.3-3^x.\frac{1}{3^2}=702\)
=> 3x(3 - 1/9) = 702
=> 3x.26/9 = 702
=> 3x = 243
=> 3x = 35
=> x = 5
Vậy x = 5
\(\left(x-1\right)\left(x+4\right)< 0\)
\(th1\orbr{\begin{cases}x-1>0\\x+4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -4\end{cases}\Leftrightarrow1< x< -4\left(1\right)}\)
\(th2\orbr{\begin{cases}x-1< 0\\x+4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-4\end{cases}\Leftrightarrow-4< x< 1\left(tm\right)}\)
vậy ....
b) \(5^{x+2}-5^{x-1}=3100\)
\(\Leftrightarrow5^x.\left(5^2-5^{-1}\right)=3100\)
\(\Leftrightarrow5^x.\frac{124}{5}=3100\)
\(\Leftrightarrow5^x=125\Leftrightarrow5^x=5^3\Leftrightarrow x=3\)
c)\(3^{x+1}-3^{x-2}=702\)
\(\Leftrightarrow3^x\left(3-3^{-2}\right)=702\)
\(\Leftrightarrow3^x.\frac{26}{9}=702\)
\(\Leftrightarrow3^x=243\Leftrightarrow3^x=3^5\Leftrightarrow x=5\)