Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mỹ Hạnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2018 lúc 2:43

Đáp án A

Vì hàm số đã cho là hàm số bậc nhất nên 2m + 1  ≠ 0 ⇔ m  ≠  (-1)/2 .

Gọi góc  α là góc tạo bởi đường thẳng và trục Ox . Theo giả thiết  α = 45 ° . Ta có:

tan α  = a ⇒ tan45 °  = 2m + 1

⇔ 1 = 2m + 1 ⇔ 0 = 2m ⇔ m = 0

Nguyễn Phương Linh
Xem chi tiết
Nguyễn Phương Linh
10 tháng 12 2020 lúc 15:09

giải giúp mik vs 

Chà Chanh
10 tháng 12 2020 lúc 16:59

a) 

Thay x=0 vào hàm số y= 3x+3, ta được: y= 3 x 0 + 3 = 3

Thay y=0 vào hàm số y= 3x+3, ta được: 0= 3x+3 => x= -1

Vậy đồ thị hàm số đi qua điểm B(-1;0) và C(0;3)

Thay x=0 vào hàm số y= -x+1, ta được: y=  -0 + 1 = 1

Thay y=0 vào hàm số y= -x+1, ta được: 0= -x+1 => x= 1

(Có gì bạn tự vẽ đồ thị nha :<< mình không load hình được sorry bạn nhiều)

b) Hoành độ giao điểm của hai đường thằng y=3x+3 và y=-x+1 :

3x+3 = -x+1

<=> 3x + x = 1 - 3

<=> 4x = -2

<=> x= - \(\dfrac{1}{2}\)

Thay x= - \(\dfrac{1}{2}\) vào hàm số y= -x+1, ta được: y= \(\dfrac{1}{2}\)+1 = \(\dfrac{3}{2}\)

Vậy giao điểm của hai đường thằng có tọa độ (\(-\dfrac{1}{2};\dfrac{3}{2}\))

c) Gọi góc tạo bởi đường thẳng y= 3x+3 là α

OB= \(\left|x_B\right|=\left|-1\right|=1\)

OC= \(\left|y_C\right|=\left|3\right|=3\)

Xét △OBC (O= 90*), có:

\(tan_{\alpha}=\dfrac{OC}{OB}=\dfrac{3}{1}=3\)

=> α= 71*34'

Vậy góc tạo bởi đường thằng y=3x+3 là 71*34'

Ngọc Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 19:03

a: Thay a=3 vào (d), ta được:

y=(3-1)x+2=2x+2

*Vẽ đồ thị

loading...

b: Gọi \(\alpha\) là góc tạo bởi đường thẳng (d): y=2x+2 với trục Ox

y=2x+2 nên a=2

\(tan\alpha=a=2\)

=>\(\alpha\simeq63^0\)

c: y=(a-1)x+2

=ax-x+2

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x=0\\y=-x+2=-0+2=2\end{matrix}\right.\)

Huyên Lê Thị Mỹ
Xem chi tiết
Akai Haruma
3 tháng 8 2021 lúc 15:48

Lời giải:

a. Giả sử đths có phương trình $y=-x+b$

Vì $A(2,3)$ đi qua đồ thị trên nên $3=-2+b$

$\Leftrightarrow b=5$

Vậy đths có phương trình $y=-x+5$

b. Cho $x=0$ thì $y=-0+5=5$

Ta có điểm $I(0,5)$ thuộc đths

Nối $I,A$ ta được đths $y=-x+5$

c. 

Gọi góc tạo bởi đt và $Ox$ là $\alpha$ thì $\tan \alpha=-1$

$\Rightarrow \alpha=135^0$

Tú72 Cẩm
Xem chi tiết
Nguyễn Đức Trí
19 tháng 9 2023 lúc 13:53

a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)

loading...

b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

\(\Rightarrow M\left(-5;5\right)\)

c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)

\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)

\(\left(d'\right):y=-x\Rightarrow k_1-1\)

\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)

\(\Rightarrow\widehat{M}\sim18^o\)

Nguyễn Đức Trí
19 tháng 9 2023 lúc 14:24

d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)

\(\Leftrightarrow y=-2.0-5=-5\)

\(\Rightarrow A\left(0;-5\right)\)

\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)

\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)

\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta MOA:\)

\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)

\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)

\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)

\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)

\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)

\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)

Diện tích \(\Delta MOA:\)

\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)

Kiều Vũ Linh
19 tháng 9 2023 lúc 14:26
x0-5/21
y=-2x-5-50 
y=-x0 -1

*) Đồ thị:

 

b) Phương trình hoành độ giao điểm của (d) và (d'):

\(-2x-5=-x\)

\(\Leftrightarrow-2x+x=5\)

\(\Leftrightarrow x=-5\) \(\Rightarrow y=-\left(-5\right)=5\)

Vậy tọa độ giao điểm của (d) và (d') là \(M\left(-5;5\right)\)

c) Ta có:

\(tanB=\dfrac{OA}{OB}=\dfrac{-5}{-\dfrac{5}{2}}=2\)

\(\Rightarrow\widehat{B}\simeq63^0\)

Mà góc tạo bởi d với trục hoành là \(\widehat{OBM}\)

\(\Rightarrow\widehat{OBM}\simeq180^0-63^0=117^0\)

d) Ta có:

\(OM^2=5^2+5^2=50\) 

\(\Rightarrow OM=5\sqrt{2}\left(cm\right)\)

\(AM^2=5^2+10^2=125\)

\(\Rightarrow AM=5\sqrt{5}\left(cm\right)\)

Chu vi \(\Delta MOA\):

\(5\sqrt{2}+5\sqrt{5}+5=5\left(\sqrt{2}+\sqrt{5}+1\right)\left(cm\right)\)

Diện tích \(\Delta MOA\)

\(S_{MOA}=\dfrac{MH.OA}{2}=\dfrac{5.5}{2}=25\left(cm^2\right)\)

Tú72 Cẩm
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 11:09

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

minh khang Nguyễn
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
28 tháng 9 2021 lúc 15:20

a) Xét x = 0 => y = 1

Xét y = 0 => x = 1/3

y x O 1/3 1 y=-3x+1

b) Xét \(tan_{\alpha}=\dfrac{1}{\dfrac{1}{3}}=3=>\alpha=71^o33'\)

Trần Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 8:30

d: Cặp đường song song là y=x-3 và y=x+4 vì a=1=a'=1

Cặp đường cắt nhau là y=x-3 và y=-2x+5 vì a=1<>a'=-2