So sánh
a. tan 19 độ và cot 40 độ
b.sin 36 độ và cos 71 độ
So sánh
a. tan 19 độ và cot 40 độ
b. sin 36 độ và cos 71 độ
a) tan 19
cot 40 = tan 50
Vì 19 < 50
Nên tan 19 < tan 50
Vậy tan 19 < cot 40
b) sin 36
cos 71 = sin 19
Vì 36 > 19
Nên sin 36 > sin 19
Vậy sin 36 > cos 71
So sánh các TSLG theo thứ tự tăng dần.
a. sin 18 độ, cos 32 độ, sin 44 độ, cos 53 độ, cos 8 độ.
b. tan 20 độ, sin 20 độ. cot 8 độ, tan 40 độ, cot 37 độ.
a: \(cos32=sin58;cos53=sin37;cos8=sin82\)
18<37<44<58<82
=>\(sin18< sin37< sin44< sin58< sin82\)
=>\(sin18< cos53< sin44< cos32< cos8\)
b: 20<45
=>\(sin20< tan20\)
\(cot8=tan82;cot37=tan53\)
20<40<53<82
=>\(tan20< tan40< tan53< tan82\)
=>\(tan20< tan40< cot37< cot8\)
=>\(sin20< tan20< tan40< cot37< cot8\)
Tính:
A = Sin 42 độ - cos 48 độ
B = cot 56 độ - tan 34 độ
C = sin 30 độ - cot 50 độ - cos 60 độ + tan 40 độ
\(A=sin42^0-cos48^0=cos\left(90^0-42^0\right)-cos48^0=cos48^0-cos48^0=0\)
\(B=cot56^0-tan34^0=tan\left(90^0-56^0\right)-tan34^0=tan34^0-tan34^0=0\)
\(C=sin30^0-cot50^0-cos60^0+tan40^0\)
\(=cos\left(90^0-30^0\right)-tan\left(90^0-50^0\right)-cos60^0+tan40^0\)
\(=cos60^0-tan40^0-cos60^0+tan40^0=0\)
\(A=\sin42^0-\cos48^0=\sin42^0-\sin42^0=0\)
\(B=\cot56^0-\tan34^0=\tan34^0-\tan34^0=0\)
sắp xếp các tỉ số lượng giác theo thứ tự tăng dần: a)sin70 độ,cos 40 độ, cos 30 độ, sin 51 độ b)cos34 độ,sin 57 độ, cot 32 độ c)cot 40 độ, sin 40 độ, cot43 độ, tan 42 độ d)tan 52 độ, cot 63 độ,tan 72 độ, cot31 độ,sin27 độ giải hộ e vs ạ e cảm ơn
Viết các tỉ số lượng giác sau thành tỉ số lượng giác của góc nhỏ hơn 45 độ;sin 75 độ;cos 53độ; tan 71; cot 47độ;sin57 độ 25' tan 68 độ 35' cos 87 độ 12'
sin75=cos15
cos53=sin37
tan71=cot19
cot47=tan43
sin57 độ 25'=cos 32 độ 35'
tan 68 độ35'=cot 21 độ 25'
cos 87 độ 12 p=sin 2 độ 48'
Bài 1: Không dùng bảng số và máy tính, hãy so sánh
a, Sin 35o và cos 55o
b, Tan 12o và cot 78o
a,35+55=90 nên sin 35=cos 55
b,12+78=90 nên tan 12 =cot 78
tik mik nha
a: \(\sin35^0=\cos55^0\)
b: \(\tan12^0=\cot78^0\)
tan 35 độ và cos 60 độ
tan 45 độ và cos 45 độ
cot 60 độ và sin 30 độ
Cho góc lượng giác \(\alpha \). So sánh
a) \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\) và 1
b) \(\tan \alpha .\cot \alpha \,\,\) và 1 với \(\cos \alpha \ne 0;\sin \alpha \ne 0\)
c) \(1 + {\tan ^2}\alpha \,\,\) và \(\frac{1}{{{{\cos }^2}\alpha }}\) với \(\cos \alpha \ne 0\)
d) \(1 + {\cot ^2}\alpha \,\) và \(\frac{1}{{{{\sin }^2}\alpha }}\) với \(\sin \alpha \ne 0\)
a) \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\)
b) \(\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)
c) \(\frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)
So sánh :
cos 35 độ và tan 55 độ
sin 72 độ và cot 18 độ
. Giải chi tiết nha, mình cần lời giải gấp >.<
ta có \(sina< tana\\ cosa< cota\)
mà 2 góc 35 độ và 55 độ là hai góc phụ nhau nên \(cos35^o=sin55^o< tan55^o\)
tương tự: \(sin72^o=Cos12^o< cot12^o\)