biết a^2 +4b^2+4ab+2a+1=0.. a;b thuộc N
CM b là SCP
tìm a,b biết a^2 +4b^2+4ab+2a+1=0
Tìm a; b; c biết:
a)\(a^2+2b^2-2ab+2a-4b+2=0\)
b)\(a^2+5b^2-4ab+2a-6b+2=0\)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
Tính giá trị phân thức M = (4ab + a ^ 2 + 4b ^ 2)/(ab) với 2a - 20b = 0 và a,b≠0
Chứng minh rằng với mọi số a,b,c ta luôn có :
a) a2 + 5b2 - 4ab + 2a - 6b + 3 > 0
b) a2 + 2b - 2ab + 2a - 4b + 2 >0
2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc
2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc
=2ab(a+2b)-ac(a+2b)+c2(a+2b)-2bc(a+2b)
=(a+2b)(2ab-ac+c2-2bc)
=(a+2b)\(\left[a\left(2b-c\right)-c\left(2b-c\right)\right]\)
=(a+2b)(2b-c)(a-c)
Biến đổi (theo hằng đẳng thức)
4b^2+a^2+4ab
-49-2a^4+14 căn 2 *a^2
`4b^2+a^2+4ab`
`=(2b)^2+2.2b.a+a^2`
`=(a+2b)^2`
`-49-2a^4+14sqrt2a^2`
`=-(2a^4-14sqrt2a^2+49)`
`=-((sqrt2a^2)^2-2.sqrt2a^2.7+7^2)`
`=-(sqrt2a^2-7)^2`
\(a^2+4ab+4b^2=\left(a+2b\right)^2\)
\(-49-2a^4+14\sqrt{2a^2}=-\left(\sqrt{2a^2}-7\right)^2\)
cho A=2a^2-3ab+4b^2
'B=3a^+4ab-b^2
C=a^2+2ab+b^2
tính A-B+C
Phân tích thành nhân tử:
\(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc\)
2a^2b + 4ab^2 -a^2c + ac^2 -4b^2c +2bc^2 - 4abc
= (2a^2b - 4abc + 2bc^2) + (4ab^2 - 4b^2c) - (a^2c - ac^2)
= 2b(a^2 - 2ac + c^2) + 4b^2(a - c) - ac(a - c)
= 2b(a - c)^2 + 4b^2(a - c) - ac(a - c)
= (a - c) [ 2b(a - c) + 4b^2 - ac ]
= (a - c) (2ab -2bc +4b^2 - ac)
= (a - c) [ (2ab - ac) + (4b^2 - 2bc) ]
= (a - c) [a(2b - c) + 2b(2b - c)]
= (a - c)(2b - c)(a + 2b)
TL:
=\(\left(2a^2b-4bc+2bc^2\right)+\left(4ab^2-4b^2c\right)-\left(a^2c-ac2\right)\)
=\(2b\left(a^2-2c+c^2\right)+4b^2\left(a-c\right)-ac\left(a-c\right)\)
=\(2b\left(a-c\right)+4b^2\left(a-c\right)-ac\left(a-c\right)\)
=\(\left(a-c\right)\left(2b+4b^2-ac\right)\)
........................
Vậy......
phân tích đa thức thành nhân tử 2a^2b+4ab^2-a^2c+ac^2+4b^2c+2bc^2-4abc
\(2a^2b +4ab^2-a^2c +ac^2-4b^2c +2bc^2-4abc\)
\(=\left(2a^2b+4ab^2-2abc-4b^2c\right)-\left(a^2c+2abc-ac^2-2bc^2\right)\)
\(=2b\left(a^2-ac+2ab-2bc\right)-c\left(a^2-ac+2ab-2bc\right)\)
\(=\left(a^2-ac+2ab-2bc\right)\left(2b-c\right)\)
\(=\left[a\left(a-c\right)+2b\left(a-c\right)\right]\left(2b-c\right)\)
\(=\left(a+2b\right)\left(a-c\right)\left(2b-c\right)\)