Giải pt: (x-1)(x2+x+4)=0
Chi tiết hộ mình với ạ, thanks
Giải chi tiết hộ mình.
Gọi x1 là một nghiệm của phương trình 3x^2+5x+4-m=0(1); x2 là một nghiệm của pt x^2-5x+4+m=0(2). Với những giá trị nào của tham số m thì 3x1+x2=1????
Theo đề bài thì ta có:
\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)
\(\Leftrightarrow x_2=7-2m\)
Thế lại vô (2) ta được
\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)
\(\Leftrightarrow4m^2-17m+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)
Cho pt: x2-(2m+1)x-4=0. Chứng tỏ pt luôn có 2 nghiệm x1, x2 với mọi m.
help mình nha, thanks mng nhiều nhé!
a=1; b=-2m-2; c=-4
Vì ac<0
nên phương trình luôn có hai nghiệm phân biệt
Ptr có: `\Delta = b^2 - 4ac = [-(2m + 1)]^2 - 4 . (-4)`
`= ( 2m + 1)^2 + 16 > 0 AA m`
`=> \Delta > 0 AA m`
Vật ptr luôn có `2` nghiệm `x_1 , x_2` với mọi `m`
Tính:
\(\dfrac{4}{7}-\dfrac{4}{9}=...\)
Giải chi tiết hộ mình ạ! Thanks
\(\dfrac{4}{7}-\dfrac{4}{9}\)
\(=\dfrac{36}{63}-\dfrac{28}{63}\)
\(=\dfrac{8}{63}\)
giải pt:
x6 -x5 +x4 - x3 + x2 -x + 3/4 =0
pls giải hộ mình với huhu
à mấy số đó là số mũ nha
x6- x5+x4 - x3 + x2 -x +3/4 =0
cau dong nao di
\(\dfrac{1}{x^2 +x}\)+\(\dfrac{1}{x^2+3x+2}\)+\(\dfrac{1}{x^2+5x+6}\)=\(\dfrac{x}{x(x+3)}\)
giải hộ mình pt này với ạ
ĐKXĐ: \(x\ne\left\{-3;-2;-1;0\right\}\)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow x=3\)
(x-5)(y-7)=1
Giải chi tiết hộ mình nhé!Thanks!
giải pt
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)
giúp mình giải chi tiết với nha đừng làm tắt ok thanks
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)
Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)
Lấy (4) trừ (3) ta có:
\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)
Giải hộ mình với: Giải pt
18(x+1)(x+2)(x+5)(2x+5)=(19/4)x^2
Thu gọn các phân thức sau với x≥0
\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}\)
giải chi tiết hộ mình với ạ tại mới học !!!
\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+1}\)
\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2\left(x-\sqrt{x}+1\right)}{\sqrt{x^3}+1}=\dfrac{2\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}+1}\)