\(\sqrt{\left(5-\sqrt{30}\right)^2}\)
Rút gọn:
\(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`
`=`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`
`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`
`=2(\sqrt5-1)sqrt{6+2\sqrt5}`
`=2(\sqrt5-1)(\sqrt5+1)`
`=2(5-1)`
`=8`
`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`
`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`
`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`
`=2(\sqrt5-1)sqrt{6+2\sqrt5}`
`=2(\sqrt5-1)(\sqrt5+1)`
`=2(5-1)`
`=8`
`(4\sqrt2+\sqrt{30})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`
`=\sqrt2(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`
`=(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{8-2\sqrt{15}}`
`=(4+\sqrt{15})(\sqrt5-\sqrt3)(\sqrt5-\sqrt3)`
`=(4+\sqrt{15})(8-2\sqrt{15})`
`=2(4+\sqrt{15})(4-\sqrt{15})`
`=2(16-15)`
`=2`
a) \(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
\(=2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{5}-1}\)
\(=\dfrac{2\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{5}+1\right)}{\sqrt{2}}\)
\(=2\cdot4=8\)
* Thực hiện phép tính
a. \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(2\left(-5\right)\right)^2}\)
b. \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)
a, \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(2\left(-5\right)\right)^2}\)
\(=\left|3-\sqrt{2}\right|+\sqrt{\left(-10\right)^2}\)
\(=3-\sqrt{2}+\left|-10\right|\)
\(=3-\sqrt{2}+10\)
\(=13-\sqrt{2}\)
b, \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)
\(=\sqrt{9}-\sqrt{1,8.20}\)
\(=3-\sqrt{36}\)
\(=3-6\)
\(=-3\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
1) \(A=2\sqrt{5}-6\sqrt{2}+3\sqrt{5}=5\sqrt{5}-6\sqrt{2}\)
2) \(B=\dfrac{30\left(\sqrt{7}+1\right)}{7-1}+\dfrac{15\left(\sqrt{7}-2\right)}{7-4}=5\sqrt{7}+5+5\sqrt{7}-10=-5+10\sqrt{7}\)
3) \(C=\left(3-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(3+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=9-5=4\)
4) \(D=3-\sqrt{2}+1-\sqrt{2}=4-2\sqrt{2}\)
Rút gọn
1) \(E=\left(\sqrt{11}-3\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{54}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)
2) \(F=\frac{\left(\sqrt{3-\sqrt{5}}-1\right)\left(\sqrt{3-\sqrt{5}}\left(3-\sqrt{5}\right)+1\right)}{4-\sqrt{5}-\sqrt{3-\sqrt{5}}}+\sqrt{5}\)
\(\frac{\left(5\sqrt{2}+2\sqrt{5}\right)\left(\sqrt{3}-3\sqrt{2}\right)}{\sqrt{30}}\)
Rút gọn
a) \(\left(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+1\right).\dfrac{1}{2}+\sqrt{\left(2-4\sqrt{5}\right)^2}\)
b) \(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(\left(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+1\right)\cdot\dfrac{1}{2}+\sqrt{\left(2-4\sqrt{5}\right)^2}\\ =\left(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\dfrac{\sqrt{5}+2}{\sqrt{5}+2}\right)\cdot\dfrac{1}{2}-\left(2-4\sqrt{5}\right)\\ =\left(\dfrac{\sqrt{5}-2+\sqrt{5}+2}{\sqrt{5}+2}\right)\cdot\dfrac{1}{2}-2+4\sqrt{5}\\ =\dfrac{1}{\sqrt{5}+2}\cdot\dfrac{1}{2}-2+4\sqrt{5}\\ =\dfrac{1}{2\sqrt{5}+4}-2+4\sqrt{5}\)Tớ chỉ giúp cậu tới đây thui. Còn lại bí rồi
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
Rút gọn giùm mình với ạ
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11+\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
\(=\sqrt{7-2\sqrt{6}}-\dfrac{5\left(\sqrt{2}-1\right)}{\sqrt{5}\left(\sqrt{2}-1\right)}+\left|11+2\sqrt{30}\right|\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{1^2-2\sqrt{6}\cdot1+\left(\sqrt{6}\right)^2}-\dfrac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{5}\cdot\sqrt{6}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{6}\right)^2}-\sqrt{5}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|1-\sqrt{6}\right|-\sqrt{5}+\left(11+2\sqrt{30}\right)\left|\sqrt{6}-\sqrt{5}\right|\)
\(=-1+6-\sqrt{5}+\left(\sqrt{6}+\sqrt{5}\right)^2\left(\sqrt{6}-\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left[\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2\right]\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left(6-5\right)\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\sqrt{6}+\sqrt{5}\)
\(=2\sqrt{6}-1\)
\(=\sqrt{6+1-2\sqrt{6}}-\dfrac{\sqrt{5}\left(\sqrt{10}-\sqrt{5}\right)}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+\sqrt{120}\right)^2}\\ =\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}-\sqrt{5}+\sqrt{\left(11^2-120\right)\left(11+2\sqrt{30}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{1\left(6+5+2\sqrt{6\cdot5}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{6}+\sqrt{5}=2\sqrt{6}-\sqrt{1}\)
* Thực hiện phép tính
a. \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{2\left(-5\right)^2}\)
b. \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)
* Thực hiện phép tính
a. \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{2\left(-5\right)^2}\)
b. \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)
Rút gọn
a)\(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
b)\(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
lm giúp mik vs ạ
a) \(=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(=\left[\sqrt{14}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right].\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)^2}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)\)
\(=\sqrt{49}-\sqrt{21}+\sqrt{21}-\sqrt{9}\)
\(=7-3=4\)
a) \(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=4\)