Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Minh Đức
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
oooloo
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 19:10

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

Dương Thị Xuân Tình
Xem chi tiết
Chuyengia247
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2022 lúc 15:20

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)

Blkscr
Xem chi tiết
Nguyễn Ngọc Oanh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 18:28

\(x+y=1\Rightarrow y=1-x\)

\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)

\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)

Nguyễn An
Xem chi tiết
Traan Dungx
Xem chi tiết
Cam Ngoc Tu Minh
12 tháng 8 2023 lúc 11:08

 

Ta có:

P = a + b + c a + b + a + b = 2(a + b) 2(-1) = -2

Ta cũng có:

P = a + b + c a + b + c - 2abc a + b + c - 2(-1)(-1)(-1) = -3

Vậy GTNN của P = -3 và GTLN của P = -2.