Cho đt \(\Delta\)x+2y-3=0, hai điểm A(1;0) và B(3;-4). Điểm M thuộc đt sao cho độ dài \(|\overrightarrow{MA}+3\overrightarrow{MB}|\)nhỏ nhất. Toạ độ của M
Trong mặt phẳng với hệ trục tọa độ oxy, cho 2 đt đi Δ1:x-y+1=0, Δ2:2x+y-1=0 và điểm P(2;1).Viết phương trình đt đi qua điểm p và cắt hai đt Δ1 vàΔ2 lầm lượt tại 2 điểm A và B sao cho P là trung điểm của AB.
\(A\left(a;a+1\right);B\left(b;1-2b\right)\\ \Rightarrow\left\{{}\begin{matrix}2x_P=a+b=4\\2y_P=a+1+1-2b=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{8}{3}\\b=\frac{4}{3}\end{matrix}\right.\\ \Rightarrow A\left(\frac{8}{3};\frac{11}{3}\right);B\left(\frac{4}{3};-\frac{5}{3}\right)\\ \Rightarrow\overrightarrow{AB}\left(-\frac{4}{3};-\frac{16}{3}\right)\Rightarrow\overrightarrow{n}_{AB}\left(4;-1\right)\Rightarrow pt\text{ }AB:4x-y-7=0\)
Lm Giúp Mk vs ..............!!!!!!!!!!!!??????????????????
Trong mặt phẳng toạ độ oxy cho đt \(\Delta\) có pt : \(x-2y-2=0\) và hai điểm : A(-1;2) , B(3;4)
a, Viết pt đt qua A và song song với \(\Delta\)
b, Tìm toạ độ điểm \(b^,\) điểm là điểm đối xứng với B qua \(\Delta\)
a: Gọi pt đường thẳng cần tìm có dạng là (d): x-2y-b=0
Thay x=-1 và y=2 vào (d), ta được:
-1-4-b=0
=>b=-5
cho ΔABC cóA(-1;0); B(2;3); C(3;-6) và đt d: x-2y-3=0. Xét xem d cắt cạnh nào của ΔABC
\(\overrightarrow{AB}=\left(3;3\right)\) ; \(\overrightarrow{BC}=\left(1;-9\right)\) ; \(\overrightarrow{AC}=\left(4;-6\right)\)
Đường thẳng d có 1 vecto chỉ phương \(\overrightarrow{u}=\left(2;1\right)\)
Do \(\overrightarrow{u}\) không cùng phương với bất kì vecto nào trong các vecto trên nên d cắt cả 3 cạnh của tam giác
cho điểm A(-1;2) đt \(\Delta\) 2x - y-1 =0 và đtròn ( c) (x-1)\(^2\) + (y-2)\(^2\)=9
tìm tọa độ giao điểm a1 là ảnh của a qua Đox
tìm tọa độ điểm a2 là ảnh của a qua Đoy
viết pt đt \(\Delta^,\) là ảnh của \(\Delta\) qua Đox
viết pt đtron ( c\(^,\)) là ảnh của (c) qua Đoy
giải nhanh giúp mình với
a: Tọa độ A1 là ảnh của A qua phép đối xứng trục Ox là:
\(\left\{{}\begin{matrix}x_{A_1}=x_A=-1\\y_{A_1}=-y_A=-2\end{matrix}\right.\)
Vậy: \(A_1\left(-1;-2\right)\)
b: Tọa độ A2 là ảnh của A qua phép đối xứng trục Oy là:
\(\left\{{}\begin{matrix}x_{A_2}=-x_A=1\\y_{A_2}=y_A=2\end{matrix}\right.\)
Vậy: \(A_2\left(1;2\right)\)
c: Tọa độ giao điểm B của (Δ) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\2x-y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)
Vậy: B(1/2;0)
Vì B thuộc Ox nên phép đối xứng qua trục Ox biến B thành chính nó
Lấy C(1;1) thuộc (d)
Tọa độ D là ảnh của C qua phép đối xứng trục Ox là:
\(\left\{{}\begin{matrix}x_D=x_C=1\\y_D=-y_C=-1\end{matrix}\right.\)
Vậy: D(1;-1)
Do đó: Δ' là phương trình đường thẳng đi qua hai điểm B(1/2;0); D(1;-1)
\(\overrightarrow{BD}=\left(\dfrac{1}{2};-1\right)=\left(1;-2\right)\)
=>VTPT là (2;1)
Phương trình Δ' là:
\(2\left(x-1\right)+1\left(y+1\right)=0\)
=>2x-2+y+1=0
=>2x+y-1=0
tìm a,b đt y=ax+b song song với đt x-3+2y=0 và cắt đt 2x-y=3 tại điểm có tung độ bằng -1
Trong mặt phẳng tọa độ, cho hai đường thẳng
\(\begin{array}{l}{\Delta _1}:x - 2y + 3 = 0\\{\Delta _2}:3x - y - 1 = 0\end{array}\) .
a) Điểm \(M\left( {1;2} \right)\) có thuộc cả hai đường thẳng nói trên hay không?
b) Giải hệ \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).
c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) với nghiệm của hệ phương trình trên.
a) Điểm \(M\left( {1;2} \right)\) thuộc cả hai đường thẳng nói trên.
b) Ta có: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y = - 3\\3x - y = 1\end{array} \right.\).
Sử dụng máy tính cầm tay, ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
c) Tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) chính là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).
Cho đt Δ có pt: 2x-5y+2=0
a) chỉ ra 2 vtcp của đt từ đó suy ra 2vtpt của đt Δ
b) tìm tọa độ 2 điểm A, B bất kì thuộc đt Δ
c) các điểm M(4;-10), N(4;2) điểm nào thuộc đt Δ
Trong mặt phẳng tọa độ Oxy cho điểm D(6;2) và hai đường thẳng (d1): x-2y+1=0; (d2): x+2y-3=0. Viết phương trình đường thẳng \(\left(\Delta\right)\) đi qua D và cắt hai đường thẳng (d1); (d2) tại hai điểm B; C sao cho tam giác tạo bởi ba đường thẳng (d1); (d2); \(\left(\Delta\right)\) là tam giác cân, với BC là cạnh đáy.
Trong mặt phẳng Oxy , cho điểm I thuộc đường thẳng delta : x+2y-2=0 và hai điểm A(1;-1) , B(4;2) . Phương trình đường tròn (C) có tâm I và đi qua hai điểm A , B :
I thuộc Δ nên I(-2y+2;y)
Theo đề, ta có: IA=IB
=>IA^2=IB^2
=>(-2y+2-1)^2+(y+1)^2=(-2y+2-4)^2+(y-2)^2
=>(2y-1)^2+(y+1)^2=(2y+2)^2+(y-2)^2
=>4y^2-4y+1+y^2+2y+1=4y^2+8y+4+y^2-4y+4
=>-2y+2=4y+8
=>-6y=-6
=>y=1
=>I(0;1)
I(0;1); A(1;-1)
=>IA=căn (1-0)^2+(-1-1)^2=căn 5
Phương trình của (C) là:
(x-0)^2+(y-1)^2=R^2=5