tính gần đúng \(X=artan\frac{\sqrt{8,9700}}{3,0100}\)
xét tính hội tụ, phân kì:
\(B=\int\limits^{+\infty}_1\frac{x+2}{x^3+1}dx\)
Xét tính hội tụ phân kỳ của tích phân:
I = \(\int\limits^{+\text{∞}}_1\dfrac{x^2-1}{x^4+1}dx\)
\(f\left(x\right)=\dfrac{x^2-1}{x^4+1}\) dương trên miền đã cho
Ta có: \(\dfrac{x^2-1}{x^4+1}\sim\dfrac{x^2}{x^4}=\dfrac{1}{x^2}\) khi \(x\rightarrow+\infty\)
Mà \(\int\limits^{+\infty}_1\dfrac{dx}{x^2}\) hội tụ nên \(\int\limits^{+\infty}_1\dfrac{x^2-1}{x^4+1}dx\) hội tụ
Xét sự hội tụ của tích phân suy rộng sau:
I =\(\int\limits^{+\infty}_0\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx\)
Ta có:
\(I=\int\limits^1_0\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx+\int\limits^{+\infty}_1\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx=I_1+I_2\)
Do hàm \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}\) liên tục và xác định trên \(\left[0;1\right]\) nên \(I_1\) là 1 tích phân xác định hay \(I_1\) hội tụ
Xét \(I_2\) , ta có \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}>0\) với mọi \(x\ge1\)
Đặt \(g\left(x\right)=\dfrac{1}{x^2\sqrt{x}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{\left(x+1\right)x^2\sqrt{x}}{\left(x^2+1\right)\sqrt{x^3+1}}=1\) (1)
\(\int\limits^{+\infty}_1g\left(x\right)dx=\int\limits^{+\infty}_1\dfrac{1}{x^2\sqrt{x}}dx\) hội tụ do \(\alpha=\dfrac{5}{2}>1\) (2)
(1);(2) \(\Rightarrow I_2\) hội tụ
\(\Rightarrow I\) hội tụ
Khảo sát sự hội tụ phân kỳ của tích phân suy rộng
\(\int\limits^{\infty}_0\dfrac{\ln\left(\sqrt[3]{1+\dfrac{3}{4}x^{200}}\right)}{x^2}dx\)
Tính :
a) \(\int\limits^3_0\dfrac{x}{\sqrt{1+x}}dx\)
b) \(\int\limits^{64}_1\dfrac{1+\sqrt{x}}{\sqrt[3]{x}}dx\)
c) \(\int\limits^2_0x^2e^{3x}dx\)
d) \(\int\limits^{\pi}_0\sqrt{1+\sin2x}dx\)
Tính các tích phân sau
1.I=\(\int\limits^{\frac{\Pi}{4}}_0\) (x+1)sin2xdx
2.I=\(\int\limits^2_1\frac{x^2+3x+1}{x^2+x}dx\)
3.I=\(\int\limits^2_1\frac{x^2-1}{x^2}lnxdx\)
4. I=\(\int\limits^1_0x\sqrt{2-x^2}dx\)
5.I=\(\int\limits^1_0\frac{\left(x+1\right)^2}{x^2+1}dx\)
6. I=\(\int\limits^5_1\frac{dx}{1+\sqrt{2x-1}}\)
7. I=\(\int\limits^3_1\frac{1+ln\left(x+1\right)}{x^2}dx\)
8.I=\(\int\limits^1_0\frac{x^3}{x^4+3x^2+2}dx\)
9. I=\(\int\limits^{\frac{\Pi}{4}}_0x\left(1+sin2x\right)dx\)
10. I=\(\int\limits^3_0\frac{x}{\sqrt{x+1}}dx\)
Tính tích phân : \(I=\int\limits^2_0\frac{x^5}{\sqrt{x^3+1}}dx\)
Ta có :\(I=\int\limits^2_0\frac{x^2x^3}{\sqrt{x^3+1}}dx\)
Đặt \(t=\sqrt{x^3+1}\) khi đó với x=0 thì t=1,x=2 thì t=3
và \(dt=\frac{3x^2}{2\sqrt{x^3+1}}dx\Rightarrow\frac{x^2}{\sqrt{x^3+1}}dx=\frac{2}{3}dt,x^3=t^2-1\)
Suy ra \(I=\frac{2}{3}\int\limits^3_1\left(t^2-1\right)dt=\frac{2}{3}\left(\frac{1}{3}t^2-t\right)|^3_1=\frac{2}{3}\left(\frac{26}{3}-2\right)=\frac{40}{9}\)
Vậy \(I=\int\limits^2_0\frac{x^5}{\sqrt{x^3+1}}dx=\frac{40}{9}\)
Tính các tích phân sau bằng phương pháp tính tích phân từng phần :
a) \(\int\limits^{e^4}_1\sqrt{x}\ln xdx\)
b) \(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{xdx}{\sin^2x}\)
c) \(\int\limits^{\pi}_0\left(\pi-x\right)\sin xdx\)
d) \(\int\limits^0_{-1}\left(2x+3\right)e^{-x}dx\)
Tính tích phân m.n giúp e với ạ ///
\(\int\limits^{2\sqrt{3}}_2\frac{\sqrt{3}}{x\sqrt{x^2-3}}dx\)
đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)
\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)
Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)
Bây giờ thay t vào là ra
Tính tích phân bằng định nghĩa và các tính chất:
1. \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx\)
2. \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx\)
3. \(\int\limits^2_1\frac{2x^3-4x+5}{x}dx\)
4. \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx\)
1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)
2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)
\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)
3/
\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)
4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)