Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DPKhanh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 8:34

\(4x+y=1\Rightarrow y=1-4x\)

\(\Rightarrow4x^2+y^2=4x^2+\left(1-4x\right)^2=20x^2-8x+1=20\left(x-\dfrac{1}{5}\right)^2+\dfrac{1}{5}\ge\dfrac{1}{5}\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{5};\dfrac{1}{5}\right)\)

Quỳnh Như
Xem chi tiết
pham thuy trang
Xem chi tiết
Linh Seoul
27 tháng 4 2016 lúc 6:22

Dễ quá

Phạm Thị Phương Thảo
27 tháng 4 2016 lúc 11:38

Bài này có 2 cách làm mình làm cách áp dụng BĐT Bunhiacopxki

Ta có  4x + y = 1 =) ( 4x + y)=1

=) (4x + y)2 = [ 2(2x)  + y ]2 <= ( 22 +1 ) [ (2x)+ y2 )

=) ( 4x + y )2 <=  5( 4x2 + y2 )

=) 1<= 5( 4x2 + y2 )

=) 1/5 <= 4x2 + y2

Hay 4x2 + y2 >= 1/5

K CHO MÌNH NHA

Mai Linh
Xem chi tiết
Khôi Bùi
15 tháng 3 2019 lúc 17:52

\(4x^2+y^2=4x^2+\left(1-4x\right)^2=4x^2+1-8x+16x^2=20x^2-8x+1=20\left(x^2-\frac{2}{5}x+\frac{1}{20}\right)\)

\(=20\left[x^2-\frac{2}{5}x+\frac{1}{25}+\frac{1}{100}\right]=20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{5}\)

Nguyễn Thành Trương
15 tháng 3 2019 lúc 18:45

BĐT$\Leftrightarrow 20x^2+5y^2\geq (4x+y)^2=16x^2+8xy+y^2\Leftrightarrow 2(x-y)^2\geq 0$ (đúng)
Dấu "=" xảy ra khi $x=y=\frac{1}{5}$

Nguyễn Thành Trương
16 tháng 3 2019 lúc 16:25

4x + y = 1 => y = 1 - 4x
Nên : 4x^2 + y^2 = 4x^2 + (1 - 4x)^2
= 4x^2 + 1 - 8x + 16x^2
= 20x^2 - 8x + 1
= 4(5x^2 - 2x) + 1
= 4/5(25x^2 - 10x) + 1
= 4/5(25x^2 - 2.5x + 1) + 1/5
= 4/5(5x - 1)^2 + 1/5
>= 1/5
Dấu "=" xảy ra khi x = 1/5 => y = 1/5

Bùi Văn Minh
Xem chi tiết
Lê Nguyên Bách
25 tháng 10 2015 lúc 17:27

Có 4x+ y2 = (2x)2 + y2

=> (4x+ y2)(2+ 12) =( (2x)2 + y2) (2+ 12)

Áp dụng bất đẳng thức Bunhiakốpxki

=>( (2x)2 + y2) (2+ 12) >= (4x + y)2 = 1     

=> (4x+ y2)*5 >= 1

=> 4x2 + y>= 1/5

>= là lớn hơn hoặc bằng

Le Truong Yen Khoa
Xem chi tiết
Dương Dương
27 tháng 4 2019 lúc 14:30

Ta có : 4x + y = 1 => y = 1 - 4x

=> 4x^2 + y^2 = 4x^2 + ( 1 - 4x )^2 = 20x^2 - 8x + 1 = 4 ( 5x^2 - 2x ) + 1 = 4/5 ( 25x^2 - 10x + 1 ) + 1/5 = 4/5 ( 5x-1 )^2 +1/5

Ta có : ( 5x-1)^2 >= 0 

=> 4/5 ( 5x-1)^2 +1/5 >= 0 + 1/5 = 1/5

Vậy 4x^2 + y^2 >= 1/5. Dấu "=" xảy ra <=> x= 1/5

kudo shinichi
28 tháng 4 2019 lúc 7:03

Áp dụng BĐT Bunhiacopxki ta có:

\(\left[\left(2x\right)^2+y^2\right].\left(2^2+1\right)\ge\left(4x+y\right)^2=1\)

\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\)

Dấu " = " xảy ra <=> \(\frac{2x}{2}=y\Leftrightarrow x=y=0,2\)

Trần Đức Mạnh
Xem chi tiết
Lê Huyền My
Xem chi tiết
ngonhuminh
26 tháng 12 2016 lúc 16:31

\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)

\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0

\(\left(2\right)2y\ge0\) với mọi y>0

\(\left(3\right)-3\ge-3\) với x,y

(1)+(2)+(3)=> dpcm

Hiểu thì  làm tiếp

Hải Anh
Xem chi tiết