Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm hương trà
Xem chi tiết
Hoàng Bảo Trân
Xem chi tiết
Tran Le Khanh Linh
13 tháng 5 2020 lúc 20:24

Ta có: \(\left(x^2+y^2+2xy+2yz+2xz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=3\)

\(\Rightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=3\)

\(\Rightarrow\left(x+y+z\right)^2\le3\)

Dấu "=" xảy ra <=> x=y=z

Do đó \(-\sqrt{3}\le x+y+z\le\sqrt{3}\)

\(\Rightarrow-\sqrt{3}\le A\le\sqrt{3}\)

=> \(\hept{\begin{cases}Min_A=-\sqrt{3}\Leftrightarrow x=y=z=\frac{-\sqrt{3}}{3}\\Max_A=\sqrt{3}\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\end{cases}}\)

Khách vãng lai đã xóa
Trần Hoài Bão
Xem chi tiết
Đặng Ngọc Quỳnh
10 tháng 11 2020 lúc 5:00

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

Khách vãng lai đã xóa
Phạm Tùng Lâm
9 tháng 8 2020 lúc 12:46

10x100=

Khách vãng lai đã xóa
sdf dafs
Xem chi tiết
Người lạnh lùng
Xem chi tiết
tth_new
16 tháng 9 2019 lúc 7:41

\(x^2-3x-3y+2xy+2y^2-4=0\)

\(\Leftrightarrow\left(x+y+3\right)^2-9\left(x+y+3\right)+y^2+14=0\)

\(\Leftrightarrow P^2-9P+y^2+14=0\)

Ta có: \(0=P^2-9P+y^2+14\ge P^2-9P+14=\left(P-7\right)\left(P-2\right)\)

\(\Leftrightarrow2\le P\le7\)

Vậy...

P/s: Về cơ bản hướng làm là thế, nhưng khi tính toán + biến đổi có thể sai, bạn tự check lại.

tth_new
16 tháng 9 2019 lúc 7:42

Dòng kế cuối là:\(\Rightarrow2\le P\le7\) nha!

Kinder
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 20:06

\(S=x\left(3x+2y+z\right)+\left(y-x\right)\left(2y+z\right)+\left(z-y\right).y\)

\(S\le4x+3\left(y-x\right)+z-y=x+2y+z\)

\(S\le\dfrac{1}{3}\left(3x+2y+z\right)+\dfrac{2}{3}\left(2y+z\right)\le\dfrac{1}{3}.4+\dfrac{2}{3}.3=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};1;1\right)\)

Như Quỳnh Phạm
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Edogawa Conan
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thùy Thùy
Xem chi tiết
I am➻Minh
Xem chi tiết
Phùng Minh Quân
30 tháng 7 2019 lúc 21:20

pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)

\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)

\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)

Dấu "=" tự xét nhé