cho x, y, z ko am 1/(1+2x)+1/(1+2y)+1/(1+2z)=2. tim GTLN cua P=xyz
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\dfrac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\dfrac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho x,y,z là các số dương thoả mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)=6
Chứng minh \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\)≤\(\dfrac{3}{2}\)
Cho x,y,z>0 và \(x^{2018}+y^{2018}+z^{2018}=3.\) Tìm max N=\(x^2+y^2+z^2\)
\(\left\{{}\begin{matrix}3x^2+2y+4=2z\left(x+3\right)\\3y^2+2z+4=2x\left(y+3\right)\\3z^2+2x+4=2y\left(z+3\right)\end{matrix}\right.\)
CÂU 2 :
a, Không dùng máy tính hãy so sánh : \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}\) và \(\sqrt{2014}+\sqrt{2015}\)
b, Tìm x, y, z biết : \(4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10\le0\)
c, Giair phương trình : \(\sqrt{\dfrac{1}{x+3}}+\sqrt{\dfrac{5}{x+4}}=4\)
cho x,y,z là các số dương thay đổi thỏa mãn : xy+yz+zx=3xyz. tìm max
\(P=\dfrac{11x+4y}{4x^2-xy+2y^2}+\dfrac{11y+4z}{4y^2-yz+2z^2}+\dfrac{11z+4x}{4z^2-zx+2x^2}\)
Cho các số thực x, y, z thỏa mãn \(7\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=6\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2016\).
Tìm max: \(P=\dfrac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\dfrac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\dfrac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
Cho ba số dương x,y,z thỏa mãn x + y + z = \(\dfrac{2019}{\sqrt{5}}\). Tìm GTNN của biểu thức : H = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)