1/ Rút gọn biểu thức : B = \(\sqrt{1+2018^2+\dfrac{2018^2}{2019^2}}+\dfrac{2018}{2019}\)
2/ Cho x, y, z là các số thực thỏa mãn điều kiện x + y + z + xy + yz + zx = 6. Chứng minh rằng : \(x^2+y^2+z^2\ge3\)
cho 3x^2+2y^2+2z^2+2yz=2018. tim min, max cua S=x+y+z
\(\sqrt{x+2018}+\sqrt{y-2019}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
cau a cho x,y,z\(\ne\)0 thoa man x+y+z=0. CM: \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}|\) cau b tinh G=\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{1+\dfrac{1}{4^2}+\dfrac{1}{5^2}}+.....+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)
Cho các số thực dương x,y,z thỏa mãn: x+y+z+2 =xyz.
Chứng minh: \(x+y+z+6\ge2.\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
(Trích đề thi học sinh giỏi Toán 9 Quảng Bình năm 2018-2019)
Cho 2 số thực x,y thỏa mãn :\(\left\{{}\begin{matrix}\sqrt[3]{x^3-7}+y^2-2y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Tính giá trị cuả biểu thức: \(Q=x^{2018}+y^{2018}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
cho (x+\(\sqrt{x^2+2018}\))(y+\(\sqrt{y^2+2018}\)) =2018
Tính x+y
tìm max:
a, \(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với 1/2<=x<= căn 5/2
b, \(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)};x,y,z>0\)