Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đặng thị phương thảo

cau a cho x,y,z\(\ne\)0 thoa man x+y+z=0. CM: \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}|\) cau b tinh G=\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{1+\dfrac{1}{4^2}+\dfrac{1}{5^2}}+.....+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

Trần Quốc Lộc
6 tháng 7 2018 lúc 17:54

\(\text{a) }\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ =\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\dfrac{x+y+z}{xyz}}\\ =\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)

\(\text{b) }\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\\ =1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2017}-\dfrac{1}{2018}\\ =2016+\dfrac{1}{2}-\dfrac{1}{2018}\\ =\dfrac{2034698}{1009}\)


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Nguyệt Trần
Xem chi tiết
ITACHY
Xem chi tiết
Xem chi tiết
Nhi Phan
Xem chi tiết
Thanh Trà
Xem chi tiết
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết