Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ITACHY

Cho x+y+z=0; x,y,z\(\ne\)0. Chứng minh rằng:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\) = \(\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)

Phùng Khánh Linh
26 tháng 7 2018 lúc 9:41

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2.\dfrac{x+y+z}{xyz}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\text{|}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\text{|}\)

Trần Quốc Lộc
26 tháng 7 2018 lúc 9:51

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{z}{xyz}+\dfrac{y}{xyz}+\dfrac{x}{xyz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
đặng thị phương thảo
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Hùng Mạnh
Xem chi tiết
Alisa Chuppy
Xem chi tiết
Nguyệt Trần
Xem chi tiết
Karry Angel
Xem chi tiết
Ex Crush
Xem chi tiết