Cho tam giác ABC nhọn (AB bé hơn AC) nội tiếp (0). Bẽ bán kính OD vuông góc với dây BC tại I. Tiếp tuyến (0) tại C và cắt D tại M
A)cmr : tứ giác ODMC nội tiếp
B)cm: góc BAD bằng DCM
Cho tam giác ABC nhọn (AB bé hơn AC) nội tiếp (0). Vẽ bán kính OD vuông góc với dây BC tại I. Tiếp tuyến (O) tại C và cắt D tại M A)cmr : tứ giác ODMC nội tiếp B)cm: góc BAD bằng DCM C) tia CM cắt tia AD tại K , tia AB cắt tia CD tại E . Cm EK// DM
CẦN GẤP CÂU C NHÉ!!!
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O.Kẻ đường kính OD vuông góc với BC tại I.Tiếp tuyến tại C và D cắt nhau tại M.Cmr tứ giác ODMC nội tiếp .CM BAD^= DCM^
Cho tam giác ABC nhọn (AB bé hơn AC) nội tiếp (0). Bẽ bán kính OD vuông góc với dây BC tại I. Tiếp tuyến (0) tại C và cắt D tại M
A)cmr : tứ giác ODMC nội tiếp
B)cm: góc BAD bằng DCM
C) tia CM cắt tia AD tại K , tia AB cắt tia CD tại E . Cm EK// FM
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
a, Xét (O) có
^BMC = ^BNC = 900 ( góc nt chắn nửa đường tròn )
=> ^AMD = ^AND = 900
Xét tứ giác AMDN có
^AMD + ^AND = 1800
mà 2 góc này đối
Vậy tứ giác AMDN nt 1 đương tròn
b, Ta có ^MAD = ^MND ( góc nt chắn cung MD của tứ giác AMDN )
mà ^MNB = ^MCB ( góc nt chắn cung MB )
Xét tứ giác OMC có OM = OC = R
Vậy tam giác OMC cân tại O
=> ^OMC = ^OCM
=> ^OMC = ^MAD
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
Cho ∆nhọn ABC (AB<AC) nội tiếp đường tròn (O;R) . các tiếp tuyến tại B ,C cắt nhau tại M
a) CM : tứ giác OBMC nội tiếp
b) Gọi D là giao điêtm của MA vs đt (O) , H là giao điểm của BC vs MO
c) CM : tứ giác OADH nội tiếp và góc AHO =góc MHD
d) CMR : góc BAD =góc CAH
bài toán này mik chưa gặp trong chương trình lp 7,có thể đây là toán lp 8 hay lp 9 j đó
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: Gọi giao EO và BC là P
AE//BC
AE vuông góc OE
=>OE vuông góc BC
=>OP vuông góc BC
=>P là trung điểm của BC
AEPH là hình chữ nhật
=>AE=PH
EJ giao BC=J
=>AE=JC
=>JC=HP
=>HJ=PC=BC/2=MN
=>HMNJ là hình bình hành
=>HM//NJ và HM=NJ
=>HM//EN và HM=EN
=>EMHN là hbh
=>K là trung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
b, b) gọi I là Tđ của AO kẻ dây AE của đường tròn tâm I , đường kính AO sao cho AE//BC .Đường thẳng HE cắt MN tại K . CM IK vuông góc với BC
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE