Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
koroba
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 21:25

a) Ta có: \(x^2-8x+7=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

b) Ta có: \(x^2+x-20=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)

c) Ta có: \(3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) Ta có: \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2-7x+3x-7=0\)

\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)

e) Ta có: \(5x^2-16x+3=0\)

\(\Leftrightarrow5x^2-15x-x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

hnamyuh
4 tháng 7 2021 lúc 21:26

a)

\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)

c)

\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)

b)

\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

d)

\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)

e)

\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f)

\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

\(\)

Phạm Bá Gia Nhất
Xem chi tiết
Trần Chí Nhân
Xem chi tiết
Phạm Tuấn Đạt
2 tháng 5 2018 lúc 21:33

Ta có :Q(x)=0

\(\Rightarrow4x^2+16x=0\)

\(\Rightarrow4x\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

Vậy 0 và -4 là 2 nghiệm của Q(x)

Mai Anh
2 tháng 5 2018 lúc 21:36

\(4x^2+16x=0\)

\(\Leftrightarrow4x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)

Vây...

Nhút Thị Nhát
2 tháng 5 2018 lúc 22:05

Ta có Q(x)=4x^2+16x=0
=> 4xx+16x=0

=> x(4x+16)=0

=>x=0

    4x=0-16

=>x=0

    4x=-16

=>x=0

    x=-16:4

=>x=0

    x=-4 

Vậy đa thức Q(x)=4x^2+16x có nghiệm là 0 và -4

Phạm Nguyễn Hoàng Lâm
Xem chi tiết
VARMY 전정눈
25 tháng 3 2019 lúc 18:22

a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3

          =1-2+(-4)+(-8)

          =-9

b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)

          =x4-2x2+4x+8x3-6-8x3+3x2+4x

          =x4+x2+8x-6

tth_new
25 tháng 3 2019 lúc 20:22

t là nốt câu c):

Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.

tth_new
25 tháng 3 2019 lúc 20:34

Làm lại câu b) của bạn kia tí nhé:

b)\(H\left(x\right)=f\left(x\right)-g\left(x\right)=x^4+x^2-6\)

c) Đa thức trên có bậc 4 nên có nhiều nhất 4 nghiệm.

\(H\left(x\right)=x^4+3x^2-2x^2-6\)

\(=\left(x^2-2\right)\left(x^2+3\right)=0\)

Suy ra \(\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=2\\x^2=-3\left(L\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Nguyễn Khôi Nguyên (^人^...
Xem chi tiết
cố quên một người
Xem chi tiết
thám tử
30 tháng 12 2018 lúc 21:09

\(x^4-4x^3+8x^2-16x+16\)

\(=\left(x^4+8x^2+16\right)-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)

Kiêm Hùng
31 tháng 12 2018 lúc 9:35

\(x^4-4x^3+8x^2-16x+16\)

\(\Rightarrow\left(\left(x^2\right)^2+8x^2+16\right)-\left(4x^3+16x\right)\)

\(\Rightarrow\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(\Rightarrow\left(x^2+4\right)\left(x^2-4x+4\right)\)

\(\Rightarrow\left(x^2+4\right)\left(x-2\right)^2\)

TN NM BloveJ
Xem chi tiết
Th.phúc
3 tháng 5 2022 lúc 21:01

a) 16x-32=0

16x =0-32

16x=-32

x=-32:16

x=-2

Vậy x=-2 là nghiệm của đa thức

Ánh Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 20:25

1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)

\(B\left(x\right)=-3x^3+4x^2-x+7\)

2: \(A-B=0\)

=>4x+3-x+7=0

=>3x+10=0

hay x=-10/3

çá﹏๖ۣۜhⒺo╰‿╯²ᵏ⁹
8 tháng 4 2022 lúc 20:38

1) 

\(A=9-x^3+4x-2x^3+4x^2-6\)

\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)

\(A=3-3x^3+4x+4x^2\)

\(A=-3x^3+4x^2+4x+3\)

 

\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)

\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)

\(B=7-3x^3+4x^2-x\)

\(B=-3x^3+4x^2-x+7\)

2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)

    \(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)

    \(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)

    \(A-B\) \(=5x-4\)

Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)

 Cho \(H\left(x\right)=0\) 

hay  \(5x-4=0\)

        \(5x\)       \(=0+4\)

        \(5x\)       \(=4\)

          \(x\)       \(=4:5\)

          \(x\)       \(=\)  \(0,8\)

Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))

MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG

 

 

 

 

Thanh Trần Nhật
Xem chi tiết
Lightning Farron
1 tháng 8 2017 lúc 19:01

\(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

\(x^6-x^4-9x^3+9x^2\)

\(=x^2\left(x^4-x^2\right)-x^2\left(9x-9\right)\)

\(=x^2\left(x^4-x^2-9x+9\right)\)

\(=x^2\left(x^4+x^3-9x-x^3-x^2+9\right)\)

\(=x^2\left[x\left(x^3+x^2-9\right)-\left(x^3+x^2-9\right)\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

\(x^4-4x^3+8x^2-16x+16\)

\(=x^4-4x^3+4x^2+4x^2-16x+16\)

\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)\)

\(=\left(x^2-4x+4\right)\left(x^2+4\right)\)

\(=\left(x-2\right)^2\left(x^2+4\right)\)