Phân tích đa thức thành nhân tử:
81x^4+4
bài 4:phân tích mỗi đa thức sau thành nhân tích
a, 83 yz + 122yz + 6xyz + yz
b,81x4(z2 - y2) - z2 + y2
c,\(\dfrac{x^3}{8}\) - \(\dfrac{y^3}{27}\) +\(\dfrac{x}{2}\) - \(\dfrac{y}{3}\)
d, x6 + x4 + x2 y2 + y4 - y6
a, \(8^3yz+12^2yz+6xyz+yz\)
\(=512yz+144yz+6xyz+yz\)
\(=yz\left(512+14+6x+1\right)\)
\(=yz\left(527+6x\right)\)
$---$
b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)
\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)
\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)
\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)
$---$
c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)
\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)
$---$
d, \(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)
$Toru$
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Phân tích đa thức thành nhân tử -8 - Phân tích đa thức thành nhân tử -8 x mũ 3 cộng 1 ta được
\(-8x^3+1=1^3-\left(2x\right)^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
1 a. phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
b. phân tích đa thức 1 - 3x + 3x2 - x3 thành nhân tử
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b. \(=\left(1-x\right)^3\)
Phân tích đa thức thành nhân tử:
$x^4+4$
\(x^4+4=x^4+4+4x^2-4x^2\)
\(=\left(x^4+4x^2+4\right)-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
Phân tích đa thức thành nhân tử
a^4 + 4
\(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)
\(=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-4a^2\\ =\left(a^2-2a+2\right)\left(a^2+2a+2\right)\)
bài 1:phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
bài 2:phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
mình cần gấp sos
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Bài 2:
7) \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
8) \(x^3+64=\left(x+4\right)\left(x^2+4x+16\right)\)
9) \(\left(a+b\right)^2-\left(2a-b\right)^2=\left(a+b+2a-b\right)\left(a+b-2a+b\right)=3a\left(-a+2b\right)\)
10) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a\cdot2b=4ab\)
11) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
12) \(\left(6x-1\right)^2-\left(3x+2\right)^2=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)=\left(9x+1\right)\left(3x-3\right)\)
1:
1: ,4x^2-6x=2x(2x-3)
2: 9x^3y^2+3x^2y^2=3x^2y^2(3x+1)
3: x^3+2x^2+3x=x(x^2+2x+3)
4: 2x^2-4x=2x(x-2)
5: 3x-6y=3(x-2y)
6: x^2-3x=x(x-3)
7: 6x^2y+4xy^2+2xy
=2xy(3x+2y+1)
8: 5x^2(x-2y)-15x(x-2y)
=(x-2y)(5x^2-15x)
=5x(x-3)(x-2y)
9: =3(x-y)+5y(x-y)
=(x-y)(5y+3)
10: =(x-1)(3x+5)
11: =2(2x-1)-3(2x-1)
=-(2x-1)
phân tích đa thức thành nhân tử
x4+4
x4+4 = (x2)2+22 = x4 + 2.x2.2 + 4 – 4x2
= (x2 + 2)2 – (2x)2 = (x2-2x+2)(x2+2x+2)
Ta có: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)