cho tam giác DEF( DE = DF) I, K nằm trên đoạn thẳng EF ( EI=FK). chứng minh DI=DK
cho tam giác cân DEF (DE=DF) trên cạnh EF lấy 2 điểm I,K sao cho EI=KF Chứng minh DI=DK
xét tam giác DEI và DFK, ta có:
DE=DF (giả thuyết)
góc DEI= góc DFK( 2 góc đáy tam giác cân)
EI=KF (giả thuyết)
=> tam giác DEI= tam giác DFK (cgc)
=>DI=DK
Ta có tam giác DEF cân tại D =>góc E=góc F
Xét tam giác DEI và tam giác DFK có:
góc E=góc F
DE=DF(gt)
EI=KF(gt)
Suy ra: tam giác DEI = tam giác DFK (c-g-c)
=>DI=DK(2 cạnh tương ứng)
Cho tam giác DEF vuông tại D, đường cao DK. Biết DE = 16cm, EF = 20cm
a) Chứng minh tam giác DKF đồng dạng với tam giác EDF
b) Tính độ dài các đoạn thẳng DF; DK
c) Kẻ đường phân giác FI (I thuộc DE) cắt DK tại M. \(\dfrac{MK}{MD}\) = \(\dfrac{DI}{EI}\)
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI
Cho tam giác DEF, kẻ EI vuông góc với DF, FK vuông góc với DE. Biết EI=FK=10cm. Độ dài các đoạn thẳng IE và EF tỉ lệ với 2 và 3 .
a) Chứng minh rằng tam giác DEF là tam giác cân.
b)Tính độ dài cạnh đáy EF.
Cho △DEF vuông tại D,kẻ đường phân giác EI của góc E ( I thuộc DF).Đường thẳng đi qua D và vuông góc với EI cắt EF tại M.
a)Chứng minh: ED=EM
b)Chứng minh: △EMI là tam giác vuông
c)So sánh độ dài hai đoạn thẳng DI và IF
d)Vẽ tia Fx song song với DM,Fx cắt EI tại K. Chứng minh rằng 3 đường thẳng DE,FK,IM đồng quy.
a) Gọi K là giao điểm của EI và DM
Xét \(\Delta EKD\)và \(\Delta EKM\)có :
\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )
\(EI\): Cạnh chung
\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)
Do đó : Tam giác vuông EKM = Tam giác vuông EKM
\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )
b)
Xét \(\Delta EDI\)và \(\Delta EMI\)có :
\(ED=EM\)( câu a )
\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )
\(EI:\)Cạnh chung
Do đó : Tam giác EMI = tam giác EDI (c.g.c )
\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )
Mà \(\widehat{EDI}=90^o\)
\(\Rightarrow\widehat{EMI}=90^o\)
\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)
c)
Vì \(\widehat{EMI}=90^o\)( câu b )
\(\Rightarrow\widehat{IMF}=90^o\)
Xét tam giác IMF ta có :
\(\widehat{IMF}=90\)
=> IF là cạnh lớn nhất ( cạnh đối diện với góc vuông )
\(\Rightarrow IF>IM\)
Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )
\(\Rightarrow IF>ID\)
c ) Áp dụng t/c đường đồng quy .
Cho tam giác DEF, I là trung điểm cua EF. Từ E và F kẻ EH⊥DI tại H; FK⊥DI tại K.
a) Chứng minh: IH=IK.
b) Chứng minh: DE+DF>DH+DK.
c) Chứng minh: DH+DK=2DI.
d) Chứng minh: DE+DF>2DI.
a)xét ΔEHI và ΔFKI có :
\(\widehat{K}=\widehat{H}\)(=90o)
\(\widehat{KIF}=\widehat{EIH}\)(2 góc đối đỉnh)
EI=FI(I là trung điểm của EF)
⇒ΔEHI=ΔFKI(cạnh huyền góc nhọn)
⇒IH=IK(2 cạnh tương ứng)
b)vì ΔEHD vuông tại H
⇒ED > HD (trong tam giác vuông cạnh huyền luôn là cạnh lớn nhất)(1)
chứng minh tương tự với Δ KID
⇒FD > DK (2)
từ (1) và (2) ⇒DE+DF>DH+DK
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Cho tam giác DEF có DE=DF. Tia phân giác của góc D cắt EF tại K. Chứng minh:
a) Tam giác DEK bằng tam giác DFK
b) DK là đường trực của đoạn thẳng EF
c) Qua điểm E, kẻ đường thẳng song song với DF cắt đường thẳng DK tại H. Chứng ming EF là tia phân giác của góc DEF.
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
Cho tam giác DEF có DE = DF . Kẻ tia phân giác DI của góc EDF ( I thuộc EF )
a) Chứng minh tam giác EDI = tam giác FDI
b) Chứng minh EI = FI
c) Chứng minh DI vuông góc với EF
a: Xét ΔEDI và ΔFDI có
DE=DF
\(\widehat{EDI}=\widehat{FDI}\)
DI chung
Do đó: ΔEDI=ΔFDI
Cho tam giác DEF vuông tại D có DE=6cm, DF =8cm, đường cao DH. Đường phân giác EK cắt DH tại I (K ∈ DF)
a) Tính độ dài đoạn thẳng EF,DK,KF
b) Chứng minh △DEK∼△HEI
c) Chứng minh DE.EI=EK.EH