a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
Cho ∆Def vuong tại D có DE = 3cm , EF vẽ đường cao AH d k đường phân giác cy k thuộc EF được k vẽ kh vuông góc với df a tính độ dài EF chứng minh rằng tam giác DEF đồng dạng với tam giác HKF và DE.HF = DF.HK c, tính độ dài DK , KF ,KH
Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm.
a) Tính EI
b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM
c) Chứng minh: DE/DF = ME/MD
d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
Cho tam giác DEF vuông tại D, có DE = 6cm, DF = 8cm. Đường cao AH
a) Chứng minh tam giác DEF đồng dạng tam giác HDF
b) tính độ dài các đoạn thẳng EF, HE, HF
cho tam giác DEF vuông tại D có DE < DF, đường phân giác EM ( E thuộc DF ) , đường cao DH ( H thuộc EF) . EM cắt DH tại K
a) Chứng minh EHK đồng dạng EDM và góc EKH= góc EMD
b) Chứng minh EK/EM = DK/MF
c) Chứng minh HK.MF=DK2
cho tam giác nhọn abc. Các đường cao BD, CE cắt nhau tại H. Kẻ BI, CK cùng vuông góc với DE (I, K thuộc DE).
a) Chứng minh: AE.AB = AD. AC
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c)Gọi M là trung điểm BC. Kẻ MI vuông góc ED tại N. Chứng minh NI = NK và EI =DK
d) đường thẳng AD cắt BC tại F. Kẻ FP vuông góc ED tại P. CHứng minh PF là tia phân giác BPC
Cho tam giác DEF vuông tại D , DE=9 DF=12. DI là đường cao a) chứng minh tam giác DIF đồng dạng tam giác DEF b) gọi K là trung điểm DF, từ I vẽ đường thẳng song song với DF cắt DE tại H, HF cắt BI tại O chứng minh 3 điểm O, K, E thẳng hàng.
Cho tam giác DEF vuông tại D có DE = 15cm; DF = 20cm. Vẽ đường phân giác DI
( I∈EF). Tính EI, FI ta được: