hàm số sau âm khi
x - \(\frac{x^2-x+6}{-x^2+3x+4}\)
Tìm nguyên làm các hàm số hữu tỉ sau :
a)
\(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)}dx\)
b) \(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx\)
a) \(f\left(x\right)=\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x}=\frac{Ax\left(x+2\right)+Bx\left(x-1\right)+C\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)x}\)
Bằng cách thay các nghiệm thực của mẫu số vào hai tử số, ta có hệ :
\(\begin{cases}x=1\rightarrow18=3A\Leftrightarrow A=6\\x=-2\rightarrow18=6B\Leftrightarrow B=3\\x=0\rightarrow12=-2C\Leftrightarrow=-6\end{cases}\) \(\Rightarrow f\left(x\right)=\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\)
Vậy : \(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}dx=\int\left(\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\right)dx=6\ln\left|x-1\right|+3\ln\left|x+2\right|-6\ln\left|x\right|+C\)
b) \(f\left(x\right)=\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-4}\)
\(=\frac{A\left(x-2\right)\left(x-4\right)+B\left(x-1\right)\left(x-4\right)+C\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}\)
Bằng cách thay các nghiệm của mẫu số vào hai tử số ta có hệ :
\(\begin{cases}x=1\rightarrow9A=3\Leftrightarrow x=3\\x=2\rightarrow14=-2B\Leftrightarrow x=-7\\x=4\rightarrow30=6C\Leftrightarrow C=5\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{3}{x-1}-\frac{7}{x-2}+\frac{5}{x-4}\)
Vậy :
\(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx=\)\(\int\left(\frac{3}{x-1}+\frac{7}{x-2}+\frac{5}{x-4}\right)dx\)=\(3\ln\left|x-1\right|-7\ln\left|x-2\right|+5\ln\left|x-4\right|+C\)
1.Cho hàm số y = g(x) = x - 4. Khi đó g(-2) bằng
A.-2 B.2 C.-6 D.6
2.Cho hàm số y = f(x) = -3x+ 5. Nếu f(x) = -7 thì x bằng
A.2/3 B.-4 C.2 D.4
Xét tính liên tục của các hàm số sau trên TXĐ của chúng
f(x)= {x2-3x +4 khi x<2
{ 5 khi x=2
{2x +1 khi x>2
`TXĐ: R`
`@` Nếu `x > 2` thì: `f(x)=2x+1`
H/s xác định trên `(2;+oo)`
`=>` H/s liên tục trên `(2;+oo)`
`@` Nếu `x < 2` thì: `f(x)=x^2-3x+4`
H/s xác định trên `(-oo;2)`
`=>` H/s liên tục trên `(-oo;2)`
`@` Nếu `x=2` thì: `f(x)=5`
`lim_{x->2^[-]} (x^2-3x+4)=2`
`lim_{x->2^[+]} (2x+1)=5`
Vì `lim_{x->2^[-]} f(x) ne lim_{x->2^[+]} f(x) =>\cancel{exists} lim_{x->2} f(x)`
`=>` H/s gián đoạn tại `x=2`
KL: H/s liên tục trên `(-oo;2)` và `(2;+oo)`
H/s gián đoạn tại `x=2`
xét tính liên tục của hàm số sau tại x = 6
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{3x^2-23x+30}{x-6}\\a\end{matrix}\right.\) khi \(x\ne6\); khi \(x=6\)
\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}\)
\(=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)
f(6)=a
Hàm số liên tục tại x=6 khi a=13
Hàm số không liên tục tại x=6 khi \(a\ne13\)
cho hàm số \(y=\frac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5}{x^2+3x-4}\)
a, tìm tập xác định của hàm số
b, chứng minh y<=3. chỉ rõ dấu bằng xảy ra khi nào
Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:
a) \(f\left( x \right) = {x^2} + \sin x;\)
b) \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}};\)
c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}.\)
a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).
Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).
b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định
Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)
Hàm số \(\frac{{2x}}{{x - 3}}\) liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)
Hàm \(\frac{{x - 1}}{{x + 4}}\) liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)
Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)
tìm a để hàm số sau liên tục tại x = 6
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{3x^2-23x+30}{x-6}\\a\end{matrix}\right.\) khi \(x\ne6\); x = 6
\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)
\(f\left(6\right)=a\)
Để hàm số liên tục tại x=6 thì \(f\left(6\right)=\lim\limits_{x\rightarrow6}f\left(x\right)\)
=>a=13
xét tính liên tục của hàm số sau tại x = -3
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+3x}{x+3}\\-6-x\end{matrix}\right.\) khi \(x\ne-3\); khi \(x=-3\)
\(\lim\limits_{x\rightarrow-3}f\left(x\right)=\lim\limits_{x\rightarrow-3}\dfrac{x^2+3x}{x+3}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x+3\right)}{x+3}=\lim\limits_{x\rightarrow-3}x=-3\)
\(f\left(-3\right)=-6-\left(-3\right)=-6+3=-3\)
Vậy: \(\lim\limits_{x\rightarrow-3}f\left(x\right)=f\left(-3\right)\)
=>Hàm số liên tục tại x=-3
Cho hàm số \(f\left( x \right) = 2{\sin ^2}\left( {3x - \frac{\pi }{4}} \right).\) Chứng minh rằng \(\left| {f'\left( x \right)} \right| \le 6\) với mọi x.
\(f'\left(x\right)=4sin\left(3x-\dfrac{\pi}{4}\right)\cdot\left[sin\left(3x-\dfrac{\pi}{4}\right)\right]'\\ =4\left(3x-\dfrac{\pi}{4}\right)'cos\left(3x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)\\ =6sin\left(6x-\dfrac{\pi}{2}\right)\)
Vì \(-1\le sin\left(6x-\dfrac{\pi}{2}\right)\le1\Rightarrow-6\le6sin\left(6x-\dfrac{\pi}{2}\right)\le6\Leftrightarrow-6\le f'\left(x\right)\le6\)
Vậy \(\left|f'\left(x\right)\right|\le6\forall x\)