cho tam giác ABC vuông tại A có AB=6cm AC=8cm. tia phân giác góc B cắt AC tại D.tính độ dài AD
bài 11 ΔABC có góc BAC = ,AB=6cm,AC=12 cm ,phân giác góc BAC cắt BC tại D.Tính AD?
bài 12 cho tam giác ABC có góc A =, AB=3cm,AC=6cm.Tính độ dài đường phân giác AD?
11:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)
12:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)
Bài 2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH cắt đường
phân giác BD tại I
a) Tính độ dài các đoạn AD,DC
b) Chứng minh tam giác AID cân
c) Chứng minh AI.BI=BD.IH
d) Tia phân giác của góc HAC cắt HC tại N. chứng minh IN//AC
a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
\(BC^{ }=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có BD là p/g \(\widehat{ABC}\),theo t/c ta có:
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}hay\dfrac{DC}{10}=\dfrac{AD}{6}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{DC}{10}=\dfrac{AD}{6}=\dfrac{DC+AD}{10+6}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}DC=10.\dfrac{1}{2}=5\left(cm\right)\\AD=6.\dfrac{1}{2}=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: \(\widehat{ABD}+\widehat{BDA}=\widehat{BAD}=90^o\)
\(\widehat{DBH}+\widehat{BIH}=\widehat{BHI}=90^o\)
Mà \(\widehat{ABD}=\widehat{DBH}\)(DB là p/g \(\widehat{ABC}\)) ⇒\(\widehat{BDA}=\widehat{BIH}\)
Lại có \(\widehat{AID}=\widehat{BIH}\)( 2 góc đối đỉnh)
⇒\(\widehat{BDA}=\widehat{AID}\)
⇒ΔAID cân tại A
c) Xét ΔABD và ΔHBI có:
\(\widehat{BAD}=\widehat{BHI}=90^o\left(gt\right)\)
\(\widehat{ABD}=\widehat{IBH}\)(BD là p/g \(\widehat{ABC}\))
⇒ΔABD ~ ΔHBI(g-g)
⇒\(\dfrac{AD}{IH}=\dfrac{BD}{BI}\)⇒\(\dfrac{AD}{BD}=\dfrac{IH}{BI}\)
Mà AD=AI(ΔAID cân tại A)⇒\(\dfrac{AI}{BD}=\dfrac{IH}{BI}\Rightarrow AI.BI=BD.IH\left(đpcm\right)\)
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC. Tính các độ dài AD, AE biết rằng AB = 6cm, AC = 8cm.
Tam giác vuông BAC có ∠A = 90o
Áp dụng định lí Pitago, ta có:
BC2 = AB2 + AC2
= 62 + 82 = 36 + 64 = 100
⇒ BC = 10 (cm)
Kẻ IF ⊥ BC
Xét hai tam giác vuông IDB và IFB, ta có:
∠(IDB) = ∠(IFB) = 90o
∠(DBI) = ∠(FBI) (gt)
cạnh huyền BI chung
Suy ra: ΔIDB = ΔIFB (cạnh huyền, góc nhọn)
Suy ra: DB = FB (hai cạnh tương ứng) (4)
Xét hai tam giác vuông IEC và IFC, ta có:
∠(IEC) = ∠(IFC) = 90o
∠(ECI) = ∠(FCI) (gt)
cạnh huyền CI chung
Suy ra: ΔIEC = ΔIFC (cạnh huyền, góc nhọn)
Suy ra: CE = CF (hai cạnh tương ứng) (5)
Mà: AD + AE = AB - DB + AC - CE
Suy ra: AD + AE = AB + AC - (DB + CE) (6)
Từ (4), (5) và (6) suy ra: AD + AE = AB + AC - (FB + FC)
= AB + AC - BC = 6 + 8 - 10 = 4 (cm)
Mà AD = AE (chứng minh trên)
Nên AD = AE = 4 : 2 = 2(cm).
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm. Kẻ đường cao AH (H thuộc BC), tia phân giác AD của góc A cắt BC tại D.
a) c/m AB2=BC.BH
b) Tính độ dài đoạn thẳng BH
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: \(AB^2=BC\cdot BH\)(cmt)
nên \(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{36}{10}=3.6\left(cm\right)\)
Vậy: BH=3,6cm
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Tia phân giác của góc A cắt BC tại D.
a) Tính BC
b) Tính . tính độ dài BD, DC.
Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có : AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)
\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)
Hình bạn tự kẻ nhé!
Xét tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 ( định lý Pytago )
=> 62 + 82 = BC2
<=> 36 + 64 = BC2
<=> 100 = BC2
<=> BC = 10 (cm) ( vì BC > 0 )
Xét tam giác ABC có: BD là đường pg của tam giác ABC
=> DA / DC = AB / BC
=> DA / ( DA + DC ) = AB/ ( BC + AB )
<=> DA / AC = 3/8
<=> AD / 8 = 3/8
<=> AD = 3 (cm)
Vậy AD = 3 cm.
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác. Kẻ MK vuông góc với BC tại K.
a) Tính độ dài cạnh BC.
b) CM: AM=KM.
c) Kẻ AD vuông góc vs BC tại D. CM: Tia AK là tia phân giác của góc DAC.
d) CM: AB+AC<BC+AD.
bạn nào có lời giải bài này thì cho mk xin vs ạ :<
Cho tam giác ABC vuông tại A có AB = 6cm ,AC =8cm . Đường phân giác của góc ABC cắt AC tại D .Kẻ DE vuông góc với BC tại E . Tia BA cắt tua ED tại F
a) Tính độ dài cạnh BC và song song các góc của tam giác ABC
b)Chứng minh tam giác BAD = tam giác BED và tam giác BAE cân
c)Chứng minh EF=AC và tính độ dài đoạn thẳng CF ( làm tròn đến chứ số thập phân thứ 2)
d)Chứng minh AE song song với CF và AEF=ACF
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
DO đó: ΔBAD=ΔBED
Suy ra: BA=BE
hay ΔBAE cân tại B
Cho tam giác ABC vuông ở A , AB=6cm; AC=8cm; BC=10cm có đường cao AH cắt cạnh BC tại H, đường phân giác BD của góc ABC cắt AC tại D.
a) Tính độ dài các đoạn thẳng AD và DC .
b) Tính AH=?
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm