1) Với giá trị nào của x thì biểu thức f(x)= x(5x+2)-x(x^2+6) không dương
Với giá trị nào của x thì tam thức bậc hai \(f\left( x \right) = 2{x^2} - 5x + 3\) mang dấu dương?
Tam thức \(f\left( x \right) = 2{x^2} - 5x + 3\) có \(\Delta = 1 > 0\), hai nghiệm phân biệt là \({x_1} = 1,{x_2} = \frac{3}{2}\) và \(a = 2 > 0\)
Ta có bảng xét dấu như sau:
Vậy tam thức đã cho mang dấu dương khi x nằm trong khoảng \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
a) 5x/2x+2 +1=-6/x+1
b) x2-6/x = x+3/2
c) Tìm x sao cho giá trị của biểu thức 3x-2/4 không nhỏ hơn giá trị của biểu thức 3x+3/6
d) Tìm x sao cho giá trị của biểu thức (x+1)2 không nhỏ hơn giá trị của biểu thức (x-1)2
e) Tìm x sao cho giá trị của biểu thức 2x-3/35 + x(x-2)/7 không lớn hơn giá trị của biểu thức x^2/7-2x-3/5
f) Tìm x sao cho giá trị của biểu thức 3x-2/4 không lớn hơn giá trị của biểu thức 3x+3/6
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Với giá trị nào của \(x\) thì :
a) Giá trị biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) ?
b) Giá trị biểu thức \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}\) không nhỏ hơn giá trị biểu thức \(\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\) ?
a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)
\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
hay x<=4
b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)
=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)
=>12x+2+3x+9>=30x+18+48-20x
=>15x+11>=10x+66
=>5x>=55
hay x>=11
Với những giá trị nào của x thì giá trị của biểu thức (x + 1)2 - 4 không lớn hơn giá trị của biểu thức (x - 3)2?
A. x < 3/2
B. x > 3/2
C. x ≤ 3/2
D. x ≥ 3/2
Từ giả thiết suy ra (x + 1)2 - 4 ≤ (x - 3)2
Û x2 + 2x + 1 - 4 ≤ x2 - 6x + 9
Û x2 + 2x + 1 - 4 - x2 + 6x - 9 ≤ 0
Û 8x ≤ 12
Û x ≤ 3/2
Vậy x ≤ 3/2là giá trị cần tìm.
Đáp án cần chọn là: C
a) Cho biểu thức E = x + 1 x 2 x 2 + 1 x 2 + 2 x + 1 1 x + 1 .
Chứng minh rằng: Giá trị của biểu thức E luôn bằng 1 với mọi giá trị x ≠ 0 và x ≠ - 1
b) Cho biểu thức F = x + 1 2 x − 2 + 3 x 2 − 1 − x + 3 2 x + 2 . 4 x 2 − 4 5 .
Chứng minh rằng với những giá trị của x hàm F xác định thì giá trị của F không phụ thuộc vào x.
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
Với giá trị nào của x thì:
Giá trị của biểu thức 6 x + 1 18 + x + 3 12 không nhỏ hơn giá trị của biểu thức 5 x + 3 6 + 12 - 5 x 9
Giá trị của biểu thức 6 x + 1 18 + x + 3 12 không nhỏ hơn giá trị của biểu thức 5 x + 3 6 + 12 - 5 x 9 nghĩa là 6 x + 1 18 + x + 3 12 ≥ 5 x + 3 6 + 12 - 5 x 9
Ta có:
⇔ 12x + 2 + 3x + 9 ≥ 30x + 18 + 48 – 20x
⇔ 12x + 3x – 30x + 20x ≥ 18 + 48 – 2 – 9
⇔ 5x ≥ 55
⇔ x ≥ 11
Vậy với x ≥ 11 thì giá trị của biểu thức 6 x + 1 18 + x + 3 12 không nhỏ hơn giá trị của biểu thức 5 x + 3 6 + 12 - 5 x 9
Với giá trị nào của x thì giá trị của biểu thức x(x-5)/9-(x+5)/4 không nhỏ hơn giá trị của biểu thức (x-1)2/9 - (x+3)/3-(x-2)/2
tìm giá trị của tham số m để biểu thức f(x)= ( -x^2 + 4(m+1)x + 1 - 4m^2 )/ -4x^2 +5x -2 luôn dương