x2 . ( y - z ) + y2 . ( z - x ) + z2 . ( x - y ) ai giúp em với ạ
Cho x,y,z khác 0 và x2 = y.z ; y2 = z.x ; z2 = x.y .
Chứng minh rằng : x=y=z
Mọi người giúp em với ạ , em đang cần rất gấp ạ . Thanks nhiều ạ !
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(x^2=yz\Rightarrow\dfrac{x}{y}=\dfrac{z}{x}\\ y^2=zx\Rightarrow\dfrac{y}{z}=\dfrac{x}{y}\\ z^2=xy\Rightarrow\dfrac{z}{x}=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\\ \Rightarrow x=y=z\)
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
c,
(\(x\) + y + z)3
=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3
= \(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 + 3(\(x\)+y)z(\(x\) + y + z) + z3
= \(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))
= \(x^3\) + y3 + z3 + 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)
= \(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)
6. Chứng minh rằng:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
(ai lm giúp với ạ iem cảm ơn nhìu
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
b.
$x^2+4y^2+z^2-2x-6z+8y+15=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1$
$=(x-1)^2+(2y+2)^2+(z-3)^2+1\geq 0+0+0+1>0$ với mọi $x,y,z$
Ta có đpcm.
Tìm các bộ số tự nhiên ( x , y ,z ) thỏa mãn x \(\le\) y \(\le\) z; x2+y2+z2=34. ( Ai giúp mình với )
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
x/2 = y/3 = z/4 và x2+ y2+ z2 = 116
(mn giải giúp mik với ạ!
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+y^2+z^2}{4+9+16}=\dfrac{116}{29}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.4=16\\y^2=4.9=36\\z^2=16.16=16^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=6\\z=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-4\\y=-6\\z=-16\end{matrix}\right.\end{matrix}\right.\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2+y^2+z^2=116\)
\(\Leftrightarrow4k^2+9k^2+16k^2=116\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=4k=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=4k=-8\end{matrix}\right.\)
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
cho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/ycho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/y
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x