Cho hình thang ABCD (AB // CD) có O là giao điểm của 2 đường chéo. Đường thẳng qua O song song với 2 đáy cắt AD, BC lần lượt ở E và F. Chứng minh rằng:
a) OE = OF
b) \(\frac{1}{AB}\) + \(\frac{1}{CD}\) = \(\frac{1}{OF}\)
Cho hình thang ABCD ( AB//CD ) có O là giao điểm của hai đường chéo. Đường thẳng qua O song song hai đáy và cắt AD, BC lần lượt tại E và F. Chứng minh OE = OF.
Áp dụng hệ quả của định lí Ta – lét cho OE//DC,
OF//DC và AB//DC ta được:
Điều phải chứng minh.
Cho hình thang ABCD ( AB//CD ) có O là giao điểm của hai đường chéo. Đường thẳng qua O song song hai đáy và cắt AD, BC lần lượt tại E và F. Chứng minh OE = OF.
Áp dụng hệ quả của định lí Ta – lét cho OE//DC,
OF//DC và AB//DC ta được:
Điều phải chứng minh.
Cho hình thang ABCD (AB// CD) có O là giao điểm 2 đường chéo. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H. Chứng minh OE= OH.
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(2\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Cho hình thang ABCD có AB //CD có O là giao điểm 2 đường chéo qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H chứng minh OE=OH
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BH}{BC}\left(2\right)\)
Xét hình thang ABCD có EH//AB//CD
nên \(\dfrac{AE}{ED}=\dfrac{BH}{HC}\)
=>\(\dfrac{ED}{AE}=\dfrac{CH}{HB}\)
=>\(\dfrac{ED+AE}{AE}=\dfrac{CH+HB}{HB}\)
=>\(\dfrac{AD}{AE}=\dfrac{CB}{HB}\)
=>\(\dfrac{AE}{AD}=\dfrac{BH}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Ta có \( \mathrm{OE} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \) và \( \mathrm{OH} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \).
Vì \( \mathrm{AB} / / \mathrm{CD} \), nên các tam giác \( \mathrm{ABE} \) và \( \mathrm{CDH} \) đồng dạng.
Do đó, \( \frac{\mathrm{AE}}{\mathrm{AD}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).
Tương tự, \( \frac{\mathrm{BE}}{\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).
Tổng hai phương trình trên ta có \( \frac{\mathrm{AE}+\mathrm{BE}}{\mathrm{AD}+\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).
Nhưng \( \mathrm{AD}+\mathrm{BA} = \mathrm{AD}+\mathrm{BC} = \mathrm{AC} \) và \( \mathrm{AE}+\mathrm{BE} = \mathrm{AE}+\mathrm{AD} = \mathrm{DE} \).
Vậy \( \frac{\mathrm{DE}}{\mathrm{AC}} = \frac{\mathrm{CH}}{\mathrm{CD}} \) hoặc \( \mathrm{DE} = \frac{\mathrm{CH} \cdot \mathrm{AC}}{\mathrm{CD}} \).
Lưu ý rằng \( \mathrm{CH} \) là độ dài đoạn thẳng vuông góc từ \( \mathrm{C} \) đến \( \mathrm{AB} \), nên \( \mathrm{CH} = \frac{\mathrm{CD} \cdot \mathrm{BH}}{\mathrm{BC}} \).
Do đó, \( \mathrm{DE} = \frac{\mathrm{CD} \cdot \mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC} \cdot \mathrm{CD}} \).
Hóa giản và ta có \( \mathrm{DE} = \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} \).
Xét tam giác \( \mathrm{BHE} \), ta thấy \( \mathrm{OE} \) là đoạn trung bình của \( \mathrm{BH} \), nên \( \mathrm{OE} = \frac{1}{2}\mathrm{BH} \).
Tổng kết lại, \( \mathrm{OE} = \frac{1}{2} \cdot \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} = \frac{\mathrm{DE}}{2} = \mathrm{OH} \).
Vậy, chúng ta đã chứng minh được \( \mathrm{OE} = \mathrm{OH} \).
Cho hình thang ABCD , AB//CD. Qua giao điểm O của 2 đường chéo, hai đường thẳng song song với 2 đáy, cắt AD và BC lần lượt ở E và H. CM: OE=OH
Cho hình thang ABCD(AB song song CD).
a) Đường thẳng song song 2 đáy cắt cạnh bên AD,BC lần lượt ở I,K và cắt đường chéo BD,AC lần lượt tại L,M.. Chứng minh IL=KM
b) AC cắt BD ở O, vẽ đường thảng qua O song song 2 đáy cắt 2 cạnh bên tại E,F. Chứng minh OE=-OF
Cho hình thang ABCD ( AB//CD), Gọi M,N lần lượt là trung điểm của AB<CD, O là giao điểm của AC và BD; I là giao điểm của AD,BC
a) chứng minh O,I,M,N thẳng hàng
b) Qua O kẻ đường thẳng song song với AB cắt AD,BC lần lượt tại E,F. Chứng minh OE=OF
alodgdhgjkhukljhkljyutfruftyhf
Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF
Cho hình thang ABCD, O là giao điểm của 2 đường chéo, đáy lớn CD. Đường thẳng qua A song song với BC cắt BD ở E và đường thẳng qua B song song với AD cắt đường thẳng AC tại F.
a) CHứng minh: EF song song với AB.
b) Chứng minh: AB^2=EF.CD
c) Gọi S1, S2, S3, S4 theo thứ tự là diện tích các tam giác CAB, OCD, OAD, OBC. Chứng minh: S1.S2=S3.S4
Cho hình thang ABCD (AB //CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng A qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự E và F
Chứng minh rằng OE = OF.
Tam giác ABD có OE//AB
=>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB
=>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB
=>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3)
=> OE/AB = OF/AB
=> OE = OF (đpcm.)