Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
Câu 5: Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD tại E. Đường thẳng qua B và song song với AD cắt AC ở F. Chứng minh EF //DC.
Câu 6: Cho hình thang ABCD có AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tị M, N. Chứng minh rằng OM = ON.
Cho hình thang ABCD (AB // CD ), có O là giao điểm 2 đường chéo AC và BD.
Đường thẳng song song với AB cắt AD, BD, AC, BC lần lượt tại E, F, G, H.
a) Chứng minh OA . OF = OB . OG
b) Chứng minh EF = GH
Bài 2. (3 điểm) Cho hình thang ABCD (AB // CD), O là giao điểm của AC và BD. Đường thẳng qua O song song với AB, CD cắt AD, BC lần lượt ở M, N. Chứng minh.
:a) OM= ON
b) AM/AD+CN/CB=1
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ
Cho hình thang ABCD (AB//CD), gọi O là giao điểm của 2 đường chéo. Qua O kẻ đường thẳng song song với 2 đáy cắt BC ở I cắt AD ở J
CMR: a) \(\frac{1}{OI}\)= \(\frac{1}{AB}\)+ \(\frac{1}{CD}\) b) \(\frac{2}{IJ}\)= \(\frac{1}{AB}\)+ \(\frac{1}{CD}\)
Cho hình thang ABCD(AB//CD,AB<CD).Có O là giao điểm của 2 đường chéo.Qua O kẻ 2 đường thẳng song song với 2 đáy cắt AD tại M,cắt BC tại N.
a) So sánh các tỉ số OM/CD và AO/AC,ON/CD và OB/BD.
b) Chứng minh OM=ON.
c) Tính MN biết AB=4cm CD=6cm.
d) Gọi E là giao điểm của 2 đường thẳng AD và BC.Chứng minh E,O và trung điểm của BC thẳng hàng.
e) Qua B kẻ đường thẳng song song với AD cắt AC tại K. Chứng minh OA mũ 2 = OK*OC
Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:
a)\(\frac{BD}{BC}=\frac{1}{3}\)
b)\(BD=DE=EC\)
Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.
Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.
Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:
a)EF//HK
b)EF//BC
Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:
a)\(DA.EG=DB.DE\)
b)\(HC^2=HE.HA\)
c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)