lim \(\sqrt{4n^3+1}-\sqrt{8n^3-n}\)
\(1.lim\left(\sqrt[3]{8n^3+4n^2+1}-\sqrt[3]{8n^3-2}\right)\)
\(2.lim\left(\sqrt[3]{n^3+n^2+1}+\sqrt[3]{8-n^3}\right)\)
\(3.lim\left(\sqrt[3]{n^3+n^2+2}-n\right)\)
Tính: Lim\(\left(\sqrt{n^2+2}.\sqrt[3]{8n^3+1}-\sqrt{4n^2+1}.\sqrt[3]{n^3+2}\right)\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+3n^2+1}-n\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-\sqrt[3]{8n^3+n}\right)\)
1:
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+3n^2+1-n^3}{\sqrt[3]{n^3+3n^2+1}+n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+1}{\sqrt[3]{n^3+3n^2+1}+n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{1}{n^2}\right)}{n\left(\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\cdot\left(3+\dfrac{1}{n^2}\right)}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)
\(=\lim\limits_{n\rightarrow\infty}n\cdot\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}=\dfrac{3}{2}>0\end{matrix}\right.\)
2:
\(=\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-2n+2n-\sqrt[3]{8n^3+n}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+1-4n^2}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{8n^3-8n^3-n}{4n^2+2n\cdot\sqrt[3]{8n^3+n}+\left(\sqrt[3]{8n^3+n}\right)^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n\cdot n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+\left(n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}\right)^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n^2\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n^2\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-1}{4n+2n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)
\(=0\)
Giúp mình giải với
a) lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
a)lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
=lim \(\frac{\sqrt{1-\frac{4}{n}}-\sqrt{\frac{4}{n}+\frac{1}{n^2}}}{\sqrt{3+\frac{1}{n^2}}+1}=\frac{1}{\sqrt{3}+1}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
= lim \(\frac{\sqrt[3]{8+\frac{1}{n^3}}-1}{2-\frac{3}{n}}=\frac{2-1}{2}=\frac{1}{2}\)
tính giới hạn sau:
\(lim\dfrac{\sqrt{4n^2-n}+\sqrt[3]{8n^3+n^2}}{2n+3}\)
\(=\lim\dfrac{\sqrt{4-\dfrac{1}{n}}+\sqrt[3]{8+\dfrac{1}{n}}}{2+\dfrac{3}{n}}=\dfrac{2+2}{2}=2\)
lim n(\(\sqrt[3]{n^3-3n^2}-3n\))
lim (\(\sqrt{4n^2+n}+\sqrt[3]{2n^2-8n^3}\))
1) = lim n. \(\frac{n^3-3n^2-27n^3}{\sqrt[3]{\left(n^3-3n^2\right)^2}+3n\sqrt[3]{n^3-3n^2}+9n^2}\)
= lim \(\frac{n\left(-26n^3-3n^2\right)}{\sqrt[3]{\left(n^3-3n^2\right)^2}+3n\sqrt[3]{n^3-3n^2}+9n^2}\)
= lim \(\frac{n^2\left(-26-\frac{3}{n}\right)}{\sqrt[3]{\left(1-\frac{3}{n}\right)^2}+3\sqrt[3]{1-\frac{3}{n}}+9}\)
= lim \(\frac{n^2\left(-26\right)}{13}=-\infty\)
2) = lim ( \(\sqrt{4n^2+n}-2n+\sqrt[3]{2n^2-8n^3}+2n\))
= lim ( \(\frac{n}{\sqrt{4n^2+n}+2n}+\frac{2n^2}{\sqrt[3]{\left(2n^2-8n^3\right)^2}-2n\sqrt[3]{2n^2-8n^3}+4n^2}\))
= \(\frac{1}{2+2}+\frac{2}{4+4+4}=\frac{5}{12}\)
Tính N = \(lim\left(\sqrt{4n^2+1}-\sqrt[3]{8n^3+n}\right)\)
\(=lim\left[n\left(\sqrt{4+\frac{1}{n^2}}-2+2-\sqrt[3]{8+\frac{1}{n^2}}\right)\right]\)
\(=lim\left[n\left(\frac{\frac{1}{n^2}}{\sqrt{4+\frac{1}{n^2}}+2}-\frac{\frac{1}{n^2}}{4+2\sqrt[3]{8+\frac{1}{n^2}}+\sqrt[3]{\left(8+\frac{1}{n^2}\right)^2}}\right)\right]\)
\(=lim\left(\frac{\frac{1}{n}}{\sqrt{4+\frac{1}{n^2}}+2}-\frac{\frac{1}{n}}{4+2\sqrt[3]{8+\frac{1}{n^2}}+\sqrt[3]{\left(8+\frac{1}{n^2}\right)^2}}\right)=\frac{0}{2+2}-\frac{0}{4+4+2}=0\)
\(lim\left(\sqrt{4n^2+2n+1}-\sqrt[3]{8n^3-3n^2+1}\right)\)
\(=\lim\left(\sqrt[]{4n^2+2n+1}-2n+2n-\sqrt[3]{8n^3-3n^2+1}\right)\)
\(=\lim\left(\dfrac{2n+1}{\sqrt[]{4n^2+2n+1}+2n}+\dfrac{3n^2-1}{4n^2+2n\sqrt[3]{8n^3-3n^2+1}+\sqrt[3]{\left(8n^3-3n^2+1\right)^2}}\right)\)
\(=\lim\left(\dfrac{2+\dfrac{1}{n}}{\sqrt[]{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+2}+\dfrac{3-\dfrac{1}{n^2}}{4+2\sqrt[3]{8-\dfrac{3}{n}+\dfrac{1}{n^3}}+\sqrt[3]{\left(8-\dfrac{3}{n}+\dfrac{1}{n^3}\right)^2}}\right)\)
\(=\dfrac{2}{\sqrt[]{4}+2}+\dfrac{3}{4+2\sqrt[3]{8}+\sqrt[3]{8^2}}=...\)
lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
lim \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\)
lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)